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Network studies of large-scale brain connectivity have begun

to reveal attributes that promote the segregation and

integration of neural information: communities and hubs.

Network communities are sets of regions that are strongly

interconnected among each other while connections between

members of different communities are less dense. The

clustered connectivity of network communities supports

functional segregation and specialization. Network hubs link

communities to one another and ensure efficient

communication and information integration. This review

surveys a number of recent reports on network communities

and hubs, and their role in integrative processes. An emerging

focus is the shifting balance between segregation and

integration over time, which manifest in continuously changing

patterns of functional interactions between regions, circuits

and systems.
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Introduction
Recent years have seen a sharp increase in empirical and

theoretical studies of networks as models of complex

systems. In neuroscience, the rising interest in brain net-

works is driven by the increasing availability of network

data on the structure and function of neural systems. Such

networks or graphs, described as collections of nodes

(neurons, regions) and edges (connections, pathways)

can be analyzed with a wide array of quantitative tools

and methods (Figure 1) [1–7]. Importantly, network

science not only provides intuitive and analytically power-

ful approaches for data analysis and modeling, it also offers

a comprehensive theoretical framework for understanding

the biological basis of brain function [8]. This framework

bridges and unifies the domains of neuroanatomy (‘struc-

tural connectivity’ [9]) and brain dynamics (‘functional and

effective connectivity’ [10]) by linking neuronal operations
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(measured empirically or generated computationally) to an

underlying anatomical substrate.

This review article surveys a selection of recent studies on

large-scale brain networks, mostly obtained from nonin-

vasive imaging of the human brain. What these studies

have in common is that they use network approaches to

gain insight into the basis of integrative brain function.

Structural connections are fundamental in this regard

because they allow neural elements to coordinate their

activity into coherent dynamic states that support cogni-

tion and behavior. To achieve such coherent dynamics,

structural networks shape the flow of information be-

tween local regions of the brain to accomplish two distinct

goals (Figure 1): firstly they promote functional segre-

gation by forming local network communities that are

intrinsically densely connected and strongly coupled; and

secondly they promote functional integration by enabling

global communication between communities through

network hubs. The balance between segregation and

integration is essential for the operation of distributed

networks underlying cognitive function [11,12]. The

remainder of this review will survey recent studies that

have identified network architectures and mechanisms

that promote segregation, integration, and their dynamic

interplay.

Segregation: network communities
Functional segregation refers to neuronal processing car-

ried out among functionally related regions arranged

within modules. In networks such modules correspond

to ‘communities’ defined by high density of connectivity

among members of the same community and low density

of connections between members of different commu-

nities. This arrangement of connections tends to generate

statistical dependence of neural signals within modules

and statistical independence between modules, and

hence promotes functional segregation. Network com-

munities can be objectively detected with a broad spec-

trum of network measures and algorithms [13] which

reveal not only their composition, but also their inter-

connections and dependencies. Virtually all studies of

brain networks have demonstrated interlinked commu-

nities that form a partly decomposable modular architec-

ture. Such architectures are hallmarks of complex systems

[14] and are thought to be of fundamental importance for

understanding mental processing and cognition [15]. In

the brain, hierarchies of linked communities span across

several levels including brain regions, functional circuits

and large-scale networks.
www.sciencedirect.com
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Communities and hubs, segregation and integration. (a) Schematic

diagram showing a set of nodes and edges arranged into a network

comprised four network communities (orange) interconnected by highly

connected and highly central network hubs (blue). Note that network

hubs are linked by structural connections. If these connections are

denser than predicted by a degree-preserving random model, these

hubs are said to form a ‘rich club’. (b) Functional segregation indicated

by strong functional coupling within communities (red) with little or no

functional coupling across communities. (c) Functional integration

indicated by globally strong functional coupling, including strong

information flow across network hubs and their mutual interconnections

(blue).
All network studies must begin with a definition of the

network’s nodes and edges [2]. In brain networks, nodes

are variously taken to be individual voxels, randomly

selected and uniformly distributed voxel clusters, or brain

regions whose boundaries are defined either on the basis

of gray matter boundaries, anatomical landmarks, func-

tional task-evoked activations, or connectivity profiles.

The initial step of node definition is particularly crucial

for studies of cerebral cortex where the detection of

anatomically and/or functionally coherent regions

remains challenging [16]. Until now, the majority of

studies have defined network nodes based on voxels or

atlas-based partitions. More recent studies have devised

data-driven regional parcellation strategies based on mye-

lination patterns [17] and connectivity profiles [18–20].

Particularly promising are multimodal approaches, for

example combining resting-state functional connectivity

with data on task-related activations [21��] (Figure 2a) or

with meta-analytic coactivation analysis [22], or combin-

ing boundary detection in structural and functional brain

networks [23]. The latter approach capitalizes on the
www.sciencedirect.com 
notion that if structural connections determine regional

functional specialization, then regions with an internally

coherent structural connection profile should also exhibit

coherent functional responses. Some recent studies have

lent support to this notion. Paralleling earlier reports [19],

a recent study of cingulate cortex found mutual agree-

ment between partitions detected with anatomical and

functional parcellation strategies [24]. A study of the

temporoparietal junction first identified anatomical sub-

divisions based on differences in their structural connec-

tivity profiles and then determined their patterns of

functional connectivity across the brain [25]. Similarly,

a clustering algorithm applied to resting-state fMRI con-

nectivity data was used to detect regional subdivisions

with distinct functional connectivity profiles in the

human orbitofrontal cortex [26]. Multimodal parcellation

of the human insula [27] by clustering data on task

activation, resting-state functional connectivity and gray

matter structure revealed a consistent partition into sub-

regions associated with different cognitive and behavioral

processes. These studies highlight the power of connec-

tivity-based approaches to identify functionally distinct

regions.

As some of these examples indicate, parcellation studies

aiming at the detection of clusters or modules in structural

and/or functional connectivity often result not only in the

definition of regional subdivisions but also to the mapping

of functional circuits interconnecting different sets of

spatially distributed regions. For example, an analysis

of resting-state functional connectivity patterns revealed

several subdivisions within the human precuneus, each of

which participated in a different set of functional circuits

linking distant regions of the cortex [28]. Employing a

similar clustering approach to functional connectivity

patterns of the default mode network suggested that

the network can be subdivided into structural com-

ponents and intrinsic circuits that are associated with

different mental processes [29]. More recently, cluster

analysis of resting-state functional connectivity in maca-

que cingulate cortex was used to identify a number of

component networks, each putatively associated with

distinct subdomains of cognitive function [30]. What

these studies have in common is that they use net-

work-based clustering techniques to delineate ‘networks

of regions’ comprising anatomically distinct functional

circuits that are associated with different cognitive

domains.

Various decomposition or clustering approaches (based on

independent component analysis, seed-based connec-

tivity, or graphs) applied to whole-brain resting-state

fMRI data have revealed that spontaneous BOLD signal

fluctuations are organized into a set of distinct large-scale

components, often identified as ‘resting-state networks’

(RSNs) or intrinsic connectivity networks (to better

reflect their role in task-states). Analyses of structural
Current Opinion in Neurobiology 2013, 23:162–171
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Figure 2
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Regional parcellation and definition of network communities. (a) The left panel shows the mapping of boundaries based on variations in the

connectivity profile of resting-state fMRI. Hot colors indicate discontinuities of these profiles indicative of putative regional boundaries, while cool

colors indicate regions with relatively stable connectivity profiles. Peaks of stability are indicated by gray spheres and denote the centers of putative

cortical regions. (b) These peaks are displayed again in this panel and are colored according to their membership in network communities. Time

courses on the right show functional activation patterns (of the regions marked with an asterisk) observed during memory retrieval tasks. Note that

regions belonging to different network communities identified based on resting-state data exhibit distinct functional activation patterns. (c) A network

of resting-state functional connectivity, estimated across a set of cortical regions. The network was formed by retaining the top 4% of the strongest

connections and is displayed using a layout algorithm optimized for visualizing graph structure in 2 dimensions. A detection algorithm was used to

identify network communities, and nodes are colored according to their community membership. (d) Spheres on the surface of the right hemisphere of

the cortex correspond to the locations of the regions forming the graph in panel (c) and their colors correspond to their community membership. The

surface color is derived from a parallel network community analysis derived from a voxel-wise graph. Communities correspond closely to resting-state

networks. Panels (a) and (b) are modified and reproduced from [21��]. Panels (c) and (d) are modified and reproduced from [33��].
and functional connectivity have shown that RSNs form

networks that are intrinsically anatomically connected

[31,32]. Several recent studies have attempted to create

comprehensive maps of RSNs across the human brain.

Using network-based community detection, a recent
Current Opinion in Neurobiology 2013, 23:162–171 
study described consistent sets of subgraphs (correspond-

ing to modules or RSNs) in whole-brain networks con-

structed from a novel regional parcellation as well as a

modified voxel-wise graph that excluded short-

range functional couplings [33��] (Figure 2b). Using
www.sciencedirect.com
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independent component analysis, another study identified

a total of 23 RSNs, arranged into a nested hierarchy along

two main branches corresponding to brain systems associ-

ated with intrinsic and extrinsic processing [34]. Using a

clustering algorithm, a third study derived a partition into

17 components, consistently identified in a discovery and

replication data set [35��]. All three studies were able to

draw clear relationships between the functional anatomy of

the detected components, clusters or communities, and

functional systems that are defined on the basis of task-

evoked coactivation. This relationship between task-free

and task-derived components is in agreement with meta-

analyses of fMRI activation studies and RSNs, which have

demonstrated associations between anatomically distinct

RSNs and specific behavioral and cognitive domains [36].

Until now, only a small number of studies have directly

examined how functional components or RSNs are

related to each other. Most clustering techniques, in-

cluding independent component analysis, generally

assign regions or nodes to a single cluster, but do not

provide information on the stability of these assignments,

on possible overlap between clusters (including the

possibility that regions or nodes belong to more than

one cluster), or on how these clusters are interconnected.

New methodological developments in network science,

for example involving link-based communities [37] and

consensus clustering [38], may soon offer a new perspect-

ive on brain network organization. One future focus is

likely on network hierarchies. Some studies have pro-

vided evidence for hierarchical organization of brain

regions in structural networks (e.g. [39]) and of RSNs

in functional networks (e.g. [34]). Hierarchical organization

of RSNs was explicitly examined in a recent study [40]

which applied a data-driven clustering algorithm to resting-

state fMRI time series. The analysis detected a number of

multi-cluster solutions with clusters (corresponding to

RSNs) that were hierarchically arranged. Some portions

of the cortex exhibited uncertain cluster assignments,

representing areas of overlap between otherwise segre-

gated networks. Future studies are needed to test if these

areas of overlap are involved in linking RSNs, perhaps

through network hubs (see next section).

The emerging picture suggests that brain networks gener-

ally exhibit complex community structure, encountered

with some consistency across studies and methods in both

structural and functional domains. It appears that this

community structure defines a hierarchy of individual brain

regions, linking regions into functional circuits, and large-

scale networks corresponding to RSNs. There are many

open questions: Are all brain regions demarcated by

equally sharp anatomical and functional boundaries? What

is the relationship of structural network communities to

functional components or RSNs? How do RSNs commu-

nicate with each other, and does such communication take

place continuously or intermittently? Answering this last
www.sciencedirect.com 
question will require a deeper understanding of integration

and the role of network hubs.

Integration: network hubs
Integrative processes in networks can be viewed from at

least two different perspectives, one based on the effi-

ciency of global communication and another on the ability

of the network to integrate distributed information. A

widely used measure of global communication efficiency

in networks [41] essentially captures the average length of

the shortest communication paths between any two

nodes. However, this measure is often found to be maxi-

mized in networks with random topology, that is networks

that do not have pronounced community structure and

hence allow for very little segregated information. In

addition, direct paths for global communication do not

provide a means for information integration, generally

thought to involve the convergence and joint processing

of specialized information derived from diverse sources.

Recent studies of structural brain networks have revealed

two important network attributes that jointly promote the

integration of information: the existence of highly con-

nected and highly central brain regions representing ‘net-

work hubs’, and a high propensity for these network hubs

to be mutually interconnected.

Hub nodes in structural networks can be defined on a

number of (often correlated) criteria, including the num-

ber of connections they maintain (their degree), the

number of paths they contribute to (their betweenness

centrality), or their connection diversity relative to a given

modular partition [42]. Using one or several of these

metrics, several recent studies of networks derived from

diffusion imaging and tractography [43,44,45�] have

identified specific cortical regions as putative hubs, with

some of them aggregated into a highly resilient structural

core [46]. While the detection of hub nodes in structural

networks rests on the ‘ground truth’ of the brain’s wiring,

hubs in functional networks are less clearly defined and

are dependent on recording parameters and methodology.

Various approaches have been used to define functional

hubs [47], most prominently among them the local

density of strong functional connections [48,49]. A com-

parison of different measures for characterizing the func-

tional centrality of brain regions demonstrated that each

of them tends to highlight different aspects of local and

global information flow, with significant differences in the

ranking of regions across different measures [50]. The

difficulty to unambiguously define functional network

hubs strongly argues for the importance of putting

dynamic observations on a firm structural basis, by adding

data on underlying anatomical connections and modeling

structure–function relations.

New avenues for characterizing functional hubs involve

the use of activation and connectivity data obtained from

resting-state and task-evoked fMRI recordings [51�], as
Current Opinion in Neurobiology 2013, 23:162–171
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well as probing for regions of convergence of multiple

connectivity paths traced in functional networks [52�]
(Figure 3a). A measure of weighted degree centrality

[53] was used to characterize the resting-state level of

global connectivity of brain regions including several that

were previously identified as ‘cognitive control regions’ in

MRI activation data [51�]. These regions, including por-

tions of the lateral prefrontal cortex, were indeed found to

be highly ranked in terms of global connectivity, and their

level of connectivity was found to be predictive of indi-

vidual differences in cognitive performance. A different

study [52�] used a novel approach called ‘stepwise func-

tional connectivity’ to identify a central multimodal integ-

ration network based on resting-state data. By placing seed

nodes in unimodal cortex and then tracking paths of

increasing lengths across the functional network, this tech-

nique allows for detecting regions where unimodal influ-

ences converge onto putative multimodal integration

centers. Regions identified by using this approach included

the superior parietal cortex, dorsolateral prefrontal cortex,

the dorsal anterior cingulate, the parietal operculum, and

portions of the anterior insula. While the characterization of
Figure 3
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functional hubs continues to be an area that is still in flux,

these and other studies appear to point toward a convergent

set of brain regions involved in functional integration.

The role of structural network hubs for maintaining

global network integrity has been examined in compu-

tational models that link structure (connectivity) to func-

tion (dynamics). These models consistently show that

network damage of hub regions leads to structural dis-

connection causing disruption or loss of functional con-

nectivity. Some early studies have investigated network

damage in large-scale simulations of spontaneous neural

activity and their associated BOLD signal fluctuations

unfolding in an empirically measured structural brain

network [54,55]. Damage to the structural network, for

example the loss of specific brain regions and their

associated structural connections, resulted in disrupted

patterns of functional connectivity, and the spatial extent

and magnitude of the disruption was partly accounted for

by the centrality of the lesion site. Empirical studies of

human brain lesions support the predictions of these

computational models regarding long-distance and
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distributed effects on functional connectivity [56] and

greater magnitude of effects following lesions of network

hubs [57]. More recent modeling studies have confirmed

the impact of structural disconnection on disturbances of

functional connectivity, and have examined possible

implications for brain disorders such as schizophrenia

[58] and neurodegenerative conditions [59].

A number of recent studies have focused on the intercon-

nections between brain hubs as a potential substrate for

central integrative processes. An important aspect of the

structural organization of the human connectome is the

existence of a prominent ‘rich club’ [60��] (Figure 3b),

defined as a set of highly connected and highly central

nodes that are more densely interconnected than expected

based on comparisons to degree-preserving null models

[61]. The cortical rich club included parts of the superior

parietal cortex, the precuneus and posterior cingulate

cortex, the anterior cingulate cortex, and the insula. A

largely consistent set of homologous regions has been

identified in an analysis of the rich club in macaque

cerebral cortex derived from tract tracing data [62]. An

analysis of short communication paths across the human

and macaque cortex revealed that a large number of such

paths travel through rich club regions and involve connec-

tions linking two or more rich club regions to one another

[62,63]. This finding suggests that the brain’s rich club

attracts and disseminates a large proportion of global

communication, thus serving to integrate information

across segregated communities and networks. The analysis

also suggests that these significant functional benefits

come at a cost to the brain’s economy [64]. While enabling

high efficiency in global communication, rich club connec-

tions tend to span long distances and thus consume valu-

able resources of brain volume, material and energy.

The brain’s rich club or ‘connective core’ may be an

essential prerequisite for enabling neural processes

underlying cognitive integration that become engaged

in the coupling of neural resources relevant to sensor-

imotor processes, in response to different attentional

demands, and in the course of both short-term and

long-term memory [65]. The topologically central pos-

ition of the core or rich club ensures the convergence and

divergence of information and allows for its integrated

processing. Rich club connectivity offers a potential net-

work substrate for a ‘global neuronal workspace’, a key

component of recent theories of higher cognition and

consciousness [66,67]. Future work is needed to investi-

gate the role of rich club regions and connections in brain

disorders affecting integrative processes, and their de-

velopment across the life span.

Segregation and integration across time and
task: network dynamics
To date, most studies of structural or functional brain

networks have built on static descriptions of network
www.sciencedirect.com 
matrices, which represent a simple summary of brain

structure and dynamics sampled over longer time spans.

However, structural connections and (on a much faster

time scale) functional connections are in constant flux and

change across time, both in the course of spontaneous and

task-evoked neural activity. The emerging picture is that

of a truly ‘restless brain’ [68], and a number of recent

studies have refocused attention on fluctuations in brain

networks across time, that is on ‘network dynamics’.

Network dynamics explicitly refers to changes in the

configuration of network nodes and edges across time.

Numerous studies have documented reconfigurations of

functional connectivity with changing conditions of sen-

sory input, task or cognitive load [69] and in the course of

learning [70]. More specifically, several recent studies

have linked differences in cognitive state to differences in

integrative or cooperative processing [71,72] and errors in

task performance to failure in appropriately reconfiguring

functional networks [73]. But dynamic changes in func-

tional connectivity are not only found to accompany

changes in task or input — they also appear to occur

spontaneously in the resting brain. In most fMRI studies,

it has been common practice to derive resting-state func-

tional connectivity from long samples of spontaneous

BOLD fluctuations processed into a single matrix of

cross-correlations. In such matrices, the strength of func-

tional couplings among nodes (estimated from the sim-

ilarity of their time courses) is represented as a single

coefficient summarizing data collected over several min-

utes of brain activity. However, computational models of

spontaneous activity unfolding in large-scale neural sys-

tems strongly suggest that structural connections can

shape functional interactions on multiple (short and long)

time scales [74], even in the absence of any overt

endogenous or exogenous processes driving fluctuations

in connectivity. Windowed analysis of simulated func-

tional connectivity revealed large variations in coupling

strengths as well as variations in nodal network metrics

such as centrality. More recently, empirical studies of

resting-state fMRI have documented nonstationarities in

functional couplings among remote brain regions [75],

and these findings have been confirmed and extended

across the human, macaque, and rat brain [76�,77�,78]

(Figure 4). Ongoing RSN dynamics across the mamma-

lian species studied to date hints at evolutionarily pre-

served mechanisms, and recording under the presence of

anesthesia suggests that the spontaneous relationships are

not solely a consequence of conscious, cognitive proces-

sing and attention shifts. Windowing of resting-state data

sets allows the characterization of nonstationary couplings

among network modules in terms of ‘dwell times’, and it

has been suggested that differences in functional con-

nectivity seen in clinical conditions may be due to altera-

tions in nonstationary temporal fluctuations [79]. In

related work, a temporal ICA analysis approach lever-

aging recent methodological developments that allow
Current Opinion in Neurobiology 2013, 23:162–171
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Figure 4
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Nonstationarities and network dynamics. (a) A matrix representation of a 68-node fully connected (unthresholded) resting-state fMRI network,

averaged across 892 subjects each with 90 graphs estimated from 33 s of data. Community detection reveals five modules (SSM, somatic sensory-

motor network; TIL, temporal/insular/limbic network; TPN, task-positive network; TNN, task-negative network; VIS, visual network). (b) Average matrix

(upper left) and individual frames from each subject’s time course. Videos of a corresponding sliding window analysis are contained in the

supplementary information of ref. [78]. (c) Changes in network structure across time in a single human subject, for 16 regions forming an oculomotor

network. The matrix and network plots at the bottom refer to a long-time average (12 min) while the other plots display 60-s windows of the same run.

Note significant fluctuations in correlation-strengths and node centrality expressed here as the node degree. Panels (a) and (b) are modified and

reproduced from [79], panel (c) is modified and reproduced from [76�].
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higher fMRI sampling rates has identified multiple

‘temporal functional modes’ [80�]. These modes define

network components not by way of spatial decomposition,

but rather on the basis of coherent temporal fluctuations

across time, allowing for spatial overlap of nodes within

modes. Approaches such as these may allow new insights

into patterns of stationarity and nonstationarity. In paral-

lel to these findings in fMRI data, several studies have

reported pronounced nonstationarities in resting-state

electromagnetic recordings, for example in measure-

ments of MEG signal power [81] and in synchronization

patterns in EEG networks [82,83].

Network dynamics represents one of the most important

new frontiers in the study of brain connectivity. Recent

evidence points to significant fluctuations of connectivity

and networks across multiple time scales, ranging from

milliseconds to seconds and involving spontaneous

dynamics as well as transitions that are input-related or

task-related. Functional (and effective) connectivity is

increasingly regarded as highly time-dependent. These

observations raise a number of questions: Are patterns of

network dynamics recorded in the resting brain related to

sequences of network states that accompany specific

tasks? Is there a finite set of patterns of functional

connectivity (a ‘functional repertoire’) supporting cogni-

tion, and is this repertoire continually revisited in the

resting brain? Do dynamic reconfigurations of functional

connectivity respect or break regional and/or community

boundaries? What is responsible for the nonstationarity of

functional couplings? Answering these questions involves

a number of empirical and analytic challenges. As these

challenges are beginning to be addressed, the dynamic

nature of brain connectivity will likely come into sharper

focus.

Conclusions
Numerous studies, only a fraction of which have been

included in this brief overview, have documented net-

work attributes such as communities and hubs that

accommodate and promote segregation and integration

of neural information. What future developments are to

be expected? The emerging picture may be one of an

increasingly dynamic and flexible multiscale network

model, where regions, circuits and communities are

demarcated by boundaries of varying degrees of sharp-

ness and temporal stability, and are arranged into nested

hierarchies. In such a model, regions, circuits and com-

munities join and separate as dynamic links form and

dissolve, spontaneously and in response to varying cog-

nitive demands. An important focus of future studies will

likely be on temporal fluctuations in network attributes

for segregation and integration of information.
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