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A common goal of neuroimaging research is to use imaging data to identify the mental processes that are
engaged when a subject performs a mental task. The use of reasoning from activation to mental functions,
known as ‘‘reverse inference,’’ has been previously criticized on the basis that it does not take into account
how selectively the area is activated by the mental process in question. In this Perspective, I outline the
critique of informal reverse inference and describe a number of new developments that provide the ability
to more formally test the predictive power of neuroimaging data.
Understanding the relationship between psychological pro-

cesses and brain function, the ultimate goal of cognitive neuro-

science, is made particularly difficult by the fact that psycholog-

ical processes are poorly defined and not directly observable,

and human brain function can only be measured through

the highly blurred and distorted lens of neuroimaging tech-

niques. However, the development of functional magnetic

resonance imaging (fMRI) 20 years ago afforded a new and

muchmore powerful way to address this question in comparison

to previous methods, and the fruits of this technology are

apparent in the astounding number of publications using fMRI

in recent years.

The classic strategy employed by neuroimaging researchers

(established most notably by Petersen, Posner, Fox, and Raichle

in their early work using positron emission tomography; Petersen

et al., 1988; Posner et al., 1988) has been tomanipulate a specific

psychological function and identify the localized effects of that

manipulation on brain activity. This has been referred to as

‘‘forward inference’’ (Henson, 2005) and is the basis for a large

body of knowledge that has been derived from neuroimaging

research. However, since the early days of neuroimaging, there

has also been a desire to reason backward from patterns of acti-

vation to infer the engagement of specificmental processes. This

has been called ‘‘reverse inference’’ (Poldrack, 2006; Aguirre,

2003) and often forms much of the reasoning observed in the

discussion section of neuroimaging papers (under the guise of

‘‘interpreting the results’’). In some cases, reverse inference

underlies the central conclusion of a paper. For example, Taka-

hashi et al. (2009) examined the neural correlates of the experi-

ence of envy and schadenfreude. They found that envy was

associated with activation in the anterior cingulate cortex, in

which they note, ‘‘Cognitive conflicts or social pain are pro-

cessed’’ (p. 938), whereas schadenfreude was associated with

activation in the ventral striatum, ‘‘a central node of reward pro-

cessing’’ (p. 938). The abstract concludes as follows: ‘‘Our find-

ings document mechanisms of painful emotion, envy, and

a rewarding reaction, schadenfreude,’’ in which the psycholog-

ical states (i.e., pain or reward) are inferred primarily from activa-

tion in specific regions (anterior cingulate or ventral striatum).
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This is just one of many examples of reverse inference that are

evident in the neuroimaging literature, and even the present

author is not immune.

Reverse inference is also common in public presentations of

imaging research. A prime example occurred during the

US Presidential Primary elections in 2007, when the

New York Times published an op-ed by a group of researchers

titled ‘‘This is Your Brain on Politics’’ (Iacoboni et al., 2007). This

piece reported an unpublished study of potential swing voters

who were shown a set of videos of the candidates while being

scanned using fMRI. Based on these imaging data, the authors

made a number of claims about the voters’ feelings regarding

the candidates. For example, ‘‘When our subjects viewed

photos of Mr. Thompson, we saw activity in the superior

temporal sulcus and the inferior frontal cortex, both areas

involved in empathy,’’ and, ‘‘Looking at photos of Mitt Romney

led to activity in the amygdala, a brain area linked to anxiety.’’

More recently, another New York Times op-ed by a marketing

writer used unpublished fMRI data to infer that people are ‘‘in

love’’ with their iPhones (Lindstrom, 2011). Clearly, the desire

to ‘‘read minds’’ using neuroimaging is strong.

In 2006, I published a paper that challenged the common use

of reverse inference in the neuroimaging literature (Poldrack,

2006; for a similar earlier critique, see Aguirre, 2003). Since

the publication of those critiques, ‘‘reverse inference’’ has

gradually become a bad word in some quarters, though very

often a citation to those papers is used as a fig leaf to excuse

the use of reverse inference. At the same time, a number of

researchers have argued that it is a fundamentally important

research tool, especially in areas such as neuroeconomics

and social neuroscience, in which the underlying mental

processes may be less well understood (e.g., Young and

Saxe, 2009). In what follows, I will lay out and update the argu-

ment against reverse inference as it is often practiced in the

literature. I will then describe how recent developments in

statistical analysis and informatics have provided new and

more powerful ways to infer mental states from neuroimaging

data and discuss the limitations of those techniques. I will

conclude by highlighting what I see as important challenges
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that remain in the quest to reliably use neuroimaging data to

understand mental function.

A Probabilistic Framework for Inference
in Neuroimaging
The goal of reverse inference is to infer the likelihood of a partic-

ular mental process M from a pattern of brain activity A, which

can be framed as a conditional probability P(MjA) (see Sarter

et al., 1996 for a similar formulation). Neuroimaging data provide

information regarding the likelihood of that pattern of activation

given the engagement of the mental process, P(AjM); this could

be activation in a specific region or a specific pattern of activity

across multiple regions. The amount of evidence that is obtained

for a prediction of mental process engagement from activation

can be estimated using Bayes’ rule:

PðMjAÞ= PðAjMÞ3PðMÞ
PðAjMÞ3PðMÞ+PðAj�MÞ3Pð�MÞ

Notably, estimation of this quantity requires knowledge of the

base rate of activation A, as well as a prior estimate of the prob-

ability of engagement of mental process M. Given these, we can

obtain an estimate of how likely the mental process is given the

pattern of activation. The amount of additional evidence that the

pattern of activity provides for engagement of the mental

process can be framed in terms of the ratio between the poste-

rior odds and prior odds, known as the Bayes factor. To the

degree that the base rate of activation in the region is high

(i.e., it is activated for many different mental processes), then

activation in that region will provide little added evidence for

engagement of a specific mental process; conversely, if that

region is very specifically activated by a particular mental

process, then activation provides a great deal of evidence for

engagement of the mental process.

This framework highlights the importance of base rates of

activation for quantifying the strength of any reverse inference,

but such base rates were not easy to obtain until recently. In

Poldrack (2006), I used the BrainMap database to obtain esti-

mates of activation likelihoods and base rates for one particular

reverse inference (viz., that activation of Broca’s area implied

engagement of language function). This analysis showed that

activation in this region provided limited additional evidence for

engagement of language function. For example, if one started

with a prior of P(M) = 0.5, activation in Broca’s area increased

the likelihood to 0.69, which equates to a Bayes factor of 2.3;

Bayes factors below 4 are considered weak. Others have since

published similar analyses that were somewhat more promising;

for example, Ariely and Berns (2010) found that activation in the

ventral striatum increased the likelihood of reward by a Bayes

factor of 9, which is considered moderately strong.

One drawback of the BrainMap database is that the papers in

the database are manually chosen to be entered and thus reflect

a biased sample of the literature. In recent work, we (Yarkoni

et al., 2011) developed an automated means to obtain activation

coordinate data (like those contained in BrainMap) from the full

text of published articles; currently, the database contains data

from 3,489 articles from 17 different journals. These data (which

are available online at http://www.neurosynth.org) provide

a less-biased means to quantify base rates of activation (though
biases clearly remain due to the lack of complete and equal

coverage of all possible mental states in the literature). Figure 1

shows a rendering of base rates of activation across the studies

in this database. What is striking is the degree to which some of

the regions that are themost common targets of informal reverse

inference (e.g., anterior cingulate and anterior insula) have the

highest base rates and therefore are the least able to support

strong reverse inferences.

Reverse Inference using Literature Mining
A thorough analysis of reverse inference using meta-analytic

data is difficult because it requires manual annotation of each

data set in order to specify which mental processes are engaged

by the task. Databases such as BrainMap rely upon relatively

coarse ontologies of mental function, whichmeans that although

one can assess the strength of inferences for broad concepts

such as ‘‘language,’’ it is not possible to perform these analyses

for finer-grained concepts that are likely to be of greater interest

to many researchers.

An alternative approach relies upon the assumption that the

words used in a paper should bear a systematic relation to the

concepts that are being examined. Yarkoni et al. (2011) used

the automatically extracted activation coordinates for 3,489

published articles, along with the full text of those articles, to

test this form of reverse inference: instead of asking how predic-

tive an activation map is for some particular mental process (as

manually annotated by an expert), this analysis asked how well

one can predict the presence of a particular term in the paper

given activation in a particular region. Although there are clearly

a number of reasons why this approach might fail, Yarkoni et al.

(2011) found that for many terms it was possible to accurately

predict activation in specific regions given the presence of the

term (i.e., forward inference), as well as to predict the likelihood

of the term in the paper given activation in a specific region (i.e.,

reverse inference). We also found that it was possible to classify

data from individual participants with reasonable accuracy, as

well as to classify the presence of words in individual studies

against as many as ten alternatives, which suggests that these

meta-analytic data can provide the basis for relatively large-

scale generalizable reverse inference.

A challenge to the use of literature mining to perform reverse

inference is that it is based on the language that researchers

use in their papers and may thus tend to reify informal reverse

inferences. For example, if researchers in the past tended to

interpret activation in the anterior cingulate cortex as reflecting

‘‘conflict’’ based on informal reverse inference, then this will

increase the support obtained from a literature-based meta-

analysis for this reverse inference (because that analysis exam-

ines the degree towhich the presence of activation in the anterior

cingulate is uniquely predictive of the term ‘‘conflict’’ appearing

in the text). Another challenge for this approach arises from the

coarse nature of coordinate-based meta-analytic data, which

will probably limit accurate generalization to domains in which

the relevant activation is distributed across large areas rather

than being reflected in finer-grained patterns of activation; for

example, it will be much easier to identify data sets in which

visual motion is present than to identify a particular motion direc-

tion. Finally, literature-based analysis is complicated by the
Neuron 72, December 8, 2011 ª2011 Elsevier Inc. 693
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Figure 1. Base Rates for Activation
A rendering of base rates of activation across 3,489 studies in the literature;
increasingly hot colors (from yellow to red) reflect more frequent activation
across all studies, with the reddest regions active in more than 20% of all
studies. Regions of most frequent activation included the anterior cingulate
cortex, anterior insula, and dorsolateral prefrontal cortex. Reprinted with
permission from Yarkoni et al. (2011).
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many vagaries of how researchers use language to describe the

mental concepts they are studying; classification will be more

accurate for terms that are used more consistently and precisely

in the literature. Despite these limitations, the meta-analytic

approach has the potential to provide useful insights into the

potential strength of reverse inferences.

Decoding Mental States: Toward Formal
Reverse Inference
Whereas the kind of reverse inference described above is

informal, in the sense that it is based on the researcher’s knowl-

edge of associations between activation and mental functions,

a more recent approach provides the ability to formally test the

ability to infer mental states from neuroimaging data. Known

variously as multivoxel pattern analysis (MVPA), multivariate

decoding, or pattern-information analysis, this approach uses

tools from the field of machine learning to create statistical

machines that can accurately decode the mental state that is

represented by a particular imaging data set. In the last 10 years,

this approach has become very popular in the fMRI literature; for

example, in the first 8months of 2011 there have beenmore than

50 publications using these methods, versus 41 for the entire

period before 2009.

A pioneering example of this approach was the study by

Haxby et al. (2001), which showed that it was possible to accu-

rately classify which one of several classes of objects a subject

was viewing by using a nearest-neighbor approach, in which

a test data set was compared to training data sets obtained for

each of the classes of interest. Whereas early work using

MVPA focused largely on the decoding of visual stimulus

features, such as object identity (Haxby et al., 2001) or simple

visual features (Haynes and Rees, 2005; Kamitani and Tong,

2005), it is now clear that more complex mental states can also

be decoded from fMRI data. For example, several studies have

shown that future intentions to perform particular tasks can be
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decoded with reasonable accuracy (Gilbert, 2011; Haynes

et al., 2007). These studies show that it is possible to quantita-

tively estimate the degree to which a pattern of brain activation

is predictive of the engagement of a specific mental process

and to thus provide a formal means to implement reverse infer-

ence. They have also provided evidence that activation in

some regions may be less diagnostic than is required (and often

assumed) for effective reverse inference. For example, neither

the ‘‘fusiform face area’’ nor the ‘‘parahippocampal place

area’’ is particularly diagnostic for the stimulus classes that acti-

vate them most strongly (faces or scenes respectively) (Hanson

and Halchenko, 2008).

Model-Based Approaches

The approach to decoding described above treats the relation

between mental states and neuroimaging activation patterns

as a data mining problem, estimating relations between the

two using statistical brute force. An alternative and more princi-

pled approach has been developed more recently, in which the

decoding of brain activation patterns is guided by computational

models of the putative processes that underlie the psychological

function. In one landmark study, Mitchell et al. (2008) showed

that it was possible to use the activation patterns from one set

of concrete nouns to predict the patterns of activation in another

set of untrained words. These predictions were derived using

a model that identified semantic features based on correlations

between noun and verb usage in a very large corpus of text.

By using ‘‘semantic feature maps’’ that reflect the activation

associated with a semantic feature (which is derived from the

mapping of nouns to verbs in the training corpus) predicted acti-

vation maps were then obtained by projecting the untrained

words into the semantic feature space. These predicted maps

were highly accurate, allowing above-chance classification of

pairs of untrained words in all of the nine participants.

Another study published by Kay et al. (2008) examined the

ability to classify natural images based on fMRI data from the

visual cortices. This study estimated a receptive field model for

each voxel (based on Gabor wavelets), which modeled the

voxel’s response along spatial location, spatial frequency, and

orientation dimensions, using fMRI data collected while viewing

a set of 1,750 natural images. They then applied the model to

a set of 120 images that were not included in the training set

and attempted to identify which image was being viewed based

on the predicted brain activity derived from the receptive field

model. The model was highly accurate at decoding which image

was being viewed, even when the set of possible images was as

large as 1,000. These studies highlight the utility of using inter-

mediate models of the stimulus space to constrain decoding

attempts.

In the former cases, the decoding problem was relatively con-

strained by the presence of a set of test items to be compared,

which varied from 2 in the Mitchell et al. (2008) study to up to

1,000 in the Kay et al. (2008). However, subsequent work has

shown that it is possible to provide realistic reconstruction of

entire images from fMRI data using Bayesian inference with

natural image priors, in effect reading the image from the

subject’s mind. Naselaris et al. (2009) used a model similar to

the one described for the Kay et al. (2008) study to attempt to

reconstruct images from brain activation. They found that the
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reconstructions provided by the basic model were not better

than chance with regard to their accuracy. However, by using

a database of six million randomly selected natural images as

priors, it was possible to create image reconstructions that had

structural accuracy substantially better than chance. Further-

more, using a hybrid model that also included semantic labels

for the images, the reconstructions also had a high degree of

semantic accuracy. Another study by Pereira et al. (2011) used

a similar approach to generate concrete words frombrain activa-

tion, using a ‘‘topic model’’ trained on corpus of text from

Wikipedia. These studies highlight the utility of model-based

decoding, which provides much more powerful decoding abili-

ties via the use of computational models that better characterize

mental processes along with statistical information mined from

large online databases.

Toward Large-Scale Decoding of Mental States
The foregoing examples of successful decoding are impressive,

but each is focused on decoding between different stimuli

(images or concrete words) for which the relevant representa-

tions are located within a circumscribed set of brain areas at

a relatively small spatial scale (e.g., cortical columns). In these

cases, decoding likely relies upon the relative activity of specific

subpopulations of neurons within those relevant cortical regions

or the fine-grained vascular architecture in those regions (see

Kriegeskorte et al., 2010 for further discussion of this issue). In

many cases, however, the goal of reverse inference is to identify

what mental processes are engaged against a much larger set of

possibilities. We refer to this here as ‘‘large-scale’’ decoding, in

which ‘‘scale’’ refers to both the spatial scale of the relevant

neural systems and the breadth of the possible mental states

being decoded. Such large-scale decoding is challenging

because it requires training data acquired across a much larger

set of possible mental states. At the same time, it is more likely to

rely upon distributions of activation across many regions across

the brain and thus has a greater likelihood of generalizing across

individuals compared to the decoding of specific stimuli, which is

more likely to rely upon idiosyncratic features of individual

brains. Althoughmost previous decoding studies have examined

generalization within the same individuals, a number of previous

studies has shown that it is possible to generalize across individ-

uals (Davatzikos et al., 2005; Mourão-Miranda et al., 2005; Shin-

kareva et al., 2008).

In an attempt to test the large-scale decoding concept, we

(Poldrack et al., 2009) examined the ability to classify which of

eight different mental tasks an individual was engaged in, using

statistical summaries of activation for each task compared to

rest from each subject. The classifier was tested on individuals

who were not included in the training set; the results showed

that highly accurate classification was possible, even when

generalizing across individuals. Accurate classification was

possible using small regions of interest but was greatest using

whole-brain data, suggesting that decoding of tasks relied

upon both local and global information. Although this work

provides a proof of concept for large-scale decoding, true

large-scale decoding is still far away; the eight mental tasks

tested in this study are but a drop in the very large bucket

of possible psychological functions, and each function would
probably need to be tested using multiple tasks to ensure inde-

pendence from specific task features.

Amajor challenge for large-scale decoding is the lack of a suffi-

cient database of raw fMRI data on which to train classifiers

across a large number of different tasks and stimuli. The devel-

opment of large databases of task-based fMRI data, such as

the OpenFMRI project (http://www.openfmri.org), should help

provide the data needed for such large-scale decoding analyses.

In addition to the need for larger databases, there is also an

urgent need for more detailed metadata describing the tasks

and processes associated with each data set. The Cognitive

Atlas project (http://www.cognitiveatlas.org; Poldrack et al.,

2011) is currently developing an ontology that will serve as

a framework for detailed annotation of neuroimaging databases,

but this is a major undertaking that will require substantial work

by the community before it is completed. Until these resources

arewell developed, the ability to classifymental states on a larger

scale is largely theoretical.

Limits on Decoding
Despite the incredible power of thesemethods to decodemental

states from neuroimaging data, some important limits remain.

Foremost, decoding methods cannot overcome the fact that

neuroimaging data are inherently correlational (cf. Poldrack,

2000), and thus demonstration of significant decoding does

not prove that a region is necessary for themental function being

decoded. Lesion studies and manipulations of brain function

using methods such as transcranial magnetic stimulation will

remain essential for identifying which regions are necessary

and which are epiphenomenal. Conversely, a region could be

important for a function even if it is not diagnostic of that function

in a decoding analysis. For example, it is known that the left

anterior insula is critical for speech articulation (Dronkers,

1996). However, given the high base rate of activation in this

region (see Figure 1), it is unlikely that large-scale decoding

analyses would find this region to be diagnostic of articulation

as opposed to the many other mental functions that seem to

activate it.

Another important feature of most decoding methods is that

they are highly opportunistic, i.e., they will take advantage of

any information present that is correlated with the processes of

interest. For example, in a recent comparison of univariate and

multivariate analysis methods in a decision-making task (Jimura

and Poldrack, 2011), we found that many regions showed

decoding sensitivity using multivariate methods that did not

show differences in activation using univariate methods. This

included regions such as the motor cortex, which presumably

carries information about the motor response that the subject

made (in this case, pressing one of four different buttons). If

one simply wishes to accurately decode behavior, then this is

interesting and useful, but from the standpoint of understanding

the neural architecture of decision making, it is likely a red

herring. More generally, it is important to distinguish between

predictive power and neurobiological reality. One common

strategy is to enter a large number of voxels into a decoding anal-

ysis and then examine the importance of each voxel for decoding

(e.g., by using the weights obtained from a regularized linear

model, as in Cohen et al., 2010). This can provide some useful
Neuron 72, December 8, 2011 ª2011 Elsevier Inc. 695
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insight into how the decoding model obtained its accuracy, but it

does not necessarily imply that the pattern of weights is reflective

of the neural coding of information. Rather, it more likely reflects

thematch between the coding of information as reflected in fMRI

(which includes a contribution from the specific vascular archi-

tecture of the region) and the specific characteristics of the

statistical machine being used. For example, analyses obtained

using methods that employ sparseness penalties (e.g., Carroll

et al., 2009) will result in a smaller number of features that

support decoding compared to a method using other forms of

penalties, but such differences would be reflective of the statis-

tical tool rather than the brain.

Finally, the ability to accurately decode mental states or func-

tions is fundamentally limited by the accuracy of the ontology

that describes those mental entities. In many cases of fine-

grained decoding (e.g., ‘‘Is the subject viewing a cat or

a horse?’’), the organization of those mental states is relatively

well defined. However, for decoding of higher-level mental

functions (e.g., ‘‘Is the subject engaging working memory?’’),

there is often much less agreement over the nature or even

the existence of those functions. We (Lenartowicz et al.,

2010) have proposed that one might actually use classification

to test claims about the underlying mental ontology; that is, if

a set of mental concepts cannot be distinguished from one

another based on neuroimaging data that are meant to manip-

ulate each one separately, then that suggests that the concepts

may not actually be distinct. This might simply reflect termino-

logical differences (e.g., the interchangeable use of ‘‘executive

control’’ and ‘‘cognitive control’’) but could also reflect more

fundamental problems with theoretical distinctions that are

made in the literature.

Whither Reverse Inference?
Given the youth of cognitive neuroscience and the enormity of

the problem that we aim to solve, we should use every possible

strategy at our disposal, so long as it is valid. Viewed as a means

to generate novel hypotheses, I think that reverse inference can

be a very useful strategy, especially if it is based on real data

(such as the meta-analytic maps from Yarkoni et al., 2011) rather

than on an informal reading of the literature. In fact, reverse infer-

ence in this sense is an example of ‘‘abductive inference’’

(Pierce, 1998) or ‘‘reasoning to the best explanation,’’ which is

widely appreciated as a useful means of scientific reasoning.

The problem with this kind of reasoning arises when such

hypotheses become reified as facts, as was well stated by the

psychologist Daniel Kahneman (Kahneman, 2009):

The more difficult test, for a general psychologist, is to

remember that the new idea is still a hypothesis which

has passed only a rather low standard of proof. I know

the test is difficult, because I fail it: I believe the interpreta-

tion, and do not label it with an asterisk when I think about

it. (p. 524)

I would argue that this test is often difficult not just for general

psychologists, but also for neuroimaging researchers, who far

too often drop the asterisk that should adorn a hypothesis

derived from reverse inference until it has been directly tested

in further studies.
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