The role of gesture in communication and thinking

Susan Goldin-Meadow

People move their hands as they talk – they gesture. Gesturing is a robust phenomenon, found across cultures, ages, and tasks. Gesture is even found in individuals blind from birth. But what purpose, if any, does gesture serve? In this review, I begin by examining gesture when it stands on its own, substituting for speech and clearly serving a communicative function. When called upon to carry the full burden of communication, gesture assumes a language-like form, with structure at word and sentence levels. However, when produced along with speech, gesture assumes a different form – it becomes imagistic and analog. Despite its form, the gesture that accompanies speech also communicates. Trained coders can glean substantive information from gesture – information that is not always identical to that gleaned from speech. Gesture can thus serve as a research tool, shedding light on speakers’ unspoken thoughts. The controversial question is whether gesture conveys information to listeners not trained to read them. Do spontaneous gestures communicate to ordinary listeners? Or might they be produced only for speakers themselves? I suggest these are not mutually exclusive functions – gesture serves as both a tool for communication for listeners, and a tool for thinking for speakers.

People gesture. This phenomenon has been remarked upon for at least 2000 years, across domains as diverse as philosophy, rhetoric, theater, divinity and language. The gestures that are most salient to speakers, and to listeners, are the codified (or conventionalized) forms that can substitute for speech. These are, however, another type of gesture that people routinely produce – informal, non-codified hand movements, fleetingly generated during the course of speaking. The content of these gestures is not typically the object of public scrutiny. As a result, these speech-accompanying gestures have the potential to reflect thoughts that may themselves be relatively unexamined by both speaker and listener. This type of gesture may thus reveal aspects of thoughts that are not seen in other, more codified forms of communication. In this review, I examine both types of gestures – those that substitute for speech, and those that accompany speech – with an eye towards understanding the role each plays in communication.

Gestures that substitute for speech

Gestures that have meaning independent of speech, and can occur on their own without speech, are known as ‘emblems’1. Emblems have standards of form and can clearly be ‘mispronounced’. For example, imagine producing the North American ‘okay’ gesture with the pinkie rather than the index finger touching the thumb – the resulting handshape is not recognizable as an ‘okay’. For the most part, emblems are...
Box 1. Biological underpinnings of speech, sign and gesture

Sign languages can be characterized by the same kinds of organizational principles as spoken languages. There are, however, surface differences between the two types of language, the most striking of which is that many linguistic devices in sign rely on spatial contrasts while speech is linear and non-spatial. In speakers, damage to the left hemisphere typically results in impairments in linguistic tasks, and damage to the right hemisphere results in impairments in spatial tasks. What happens when a signer, whose language is grounded in spatial contrasts, experiences brain damage? It turns out that, like speakers, signers with left hemisphere lesions perform more poorly on language tasks than signers with right hemisphere lesions. Moreover, they do not show the deficits in spatial tasks that signers with right hemisphere lesions do. These findings suggest that sign is processed as linguistic information rather than spatial information, and that the left hemisphere is specialized for processing that information, be it transmitted by hand or mouth (Ref. a) (but see the recent discussion between Hickok, Biltuji and Klima, and Corina, Neville and Brooker on the possibility that the right hemisphere also plays a role in sign language processing, Ref. b). The same question can be addressed in neurologically intact speakers and signers. Using behavioral tasks, Corina, Vaid and Biltuji (Ref. d) found left hemisphere specialization, not only when hearing speakers processed speech, but also when deaf signers processed sign. Interestingly, they found no evidence of hemispheric asymmetry when either group processed gesture – neither emblems (e.g. waving good-bye, giving a thumbs-up) nor sequences of limb movements that had no meaning. In addition to demonstrating once again the commonalities between sign and speech, this study underscores the differences between gestures that are organized around linguistic principles (e.g. ASL) and gestures that are not so organized.

Thus far, only emblems and non-meaningful movements have been tested in these paradigms, leaving two interesting questions unanswered: (1) Do the non-coded and spontaneous gestures that accompany speech in hearing persons show left hemisphere dominance? The answer is likely to be ‘no’ as these gestures do not exhibit the hierarchically segmented structures found in spoken languages and codified sign languages. (2) Do the ideologically coded gestures that deaf children of hearing parents create to serve the functions of a primary communication system show left hemisphere dominance? If truly linguistic, these home-made gesture systems are likely to be processed like natural-language sign, signed or spoken, and thus are likely to be processed by the left hemisphere.

References

4 Conant, J. and Gage, H.F. (1993) Is it possible to predict when the manual modality will assume language-like structure and when it will not? We have suggested that the manual modality takes on grammatical properties only when it is required to carry the full burden of communication (as in conventional sign languages of the deaf, and unconventional gesture systems created by deaf children lacking language models). When the manual modality is used in conjunction with speech and does not carry the full burden of communication, it does not assume language-like form – that is, it does not convey meaning by rule-governed combinations of discrete units. Rather, these gestures convey meaning semantically and idiogrammatically through continuously varying forms. The question is whether the gestures that accompany speech play a role in communication despite the fact that they are not language-like in form.

Gestures that accompany speech

Nonverbal behaviors, including gestures that accompany speech, have traditionally been assumed to reflect speakers’ feelings and emotions and have been used by researchers as
A substantial number of investigators have observed the spon-
taneous gestures that accompany speech in conversations\(^\text{25}\),
and some have interpreted them as reflecting an underlying
structure of the speaker's thoughts. For example, four
investigators have noted that gestures produced in conversa-
tion tend to be related to the grammatical structure
of the sentence (Box 3).

The hallmark of an ergative pattern is that the actor in an intransitive
sentence (‘you’ in the proposition ‘you move there’) is treated
differently (i.e., given a dif-
ferent syntactic or morphological marking) from the actor in a transitive
sentence (‘you’ in ‘you eat pretzels’). By contrast, in an accusative
language such as English, intransitive actors are treated
like transitive actors and not like patients; for example, both actors precede the
verb (‘you move there’) and both are marked for ’patienthood’.

Fig. I. Probability with which transitive actors (TA), patients (P), and intransitive actors (IA) are gestured. Probabilities were calculated using sentences in which three semantic elements could be gestured but only two el-
ements actually were gestured. Both American (A) and Chinese (C) deaf children (black bars, also identified by name) showed significant differences in production patterns across the three elements: gestures were produced reliably more often for intransitive actors than for transitive actors, but were equally likely for transitive actors and patients. The crucial question is whether deaf children produced gestures reliably for one type of actor (you, as mover) than for transitive actors (you, as eater). The crucial question is whether deaf children produced gestures reliably for one type of actor (you, as mover) than for transitive actors (you, as eater). In fact, gestures were produced significantly more often for intransitive actors than for transitive actors, and there were no significant differences between intransitive actors and patients. This production probability
conformed to an ergative pattern — gestures produced were equal for intransitive
actors and patients, and distinct for transitive actors. Like their children,
most deaf children tended to produce more gestures for patients than for transitive actors in the spontaneous gestures they produced when talking. However, unlike their chil-
dren, they showed no reliable patterning of intransitive actors, and thus
did not display an ergative pattern.

In addition to reliably producing some semantic elements at the expense of oth-
ers, children were also consistent in where those elements were positioned in
two-gesture strings. Intransitive actors were produced in the first position of a
two-gesture string (‘you move there’), as were patients (‘pretzels eat you’). The one child who produced enough transitive actors for analysis showed an ergative pattern here too (Ref. f). He produced transitive actors in the second position of a two-
gesture string (‘you eat pretzels’, see Fig. II), thereby distinguishing this type of act from
both intransitive actors and patients.

The deaf children thus introduced into their gesture systems a pattern that
can be found in natural languages, but that was not found in the spontaneous
gestures their hearing parents used with them.

References
Language and Language Researchers (Kessen, W., ed.), pp. 187–221, Erlbaum
Aboriginal Studies

A route to speakers’ attitudes. But gesture has the potential to
convey substantive information about a task (Box 3). Are re-
searchers able to take advantage of this source of information
into the speaker’s thoughts?

The first step in addressing this question is to assess
whether gesture can be interpreted reliably and consistently.
A substantial number of investigators have observed the spon-
taneous gestures that accompany speech in conversations\(^\text{20}\),
narratives\(^\text{15}\), descriptions of objects and actions\(^\text{21}\), and expla-
nations\(^\text{30}\). The gestures produced in these situations can be assigned meanings and, more importantly, independent ob-
servers reliably assign the same meaning to the same gesture.

The second step is to determine whether the meanings experimenters assign to gesture are the meanings the speaker
intends. Consider a child asked to complete an ‘explanation task’ in which she explains her solutions to a set of math problems and, later, a ‘rating task’ in which she judges solutions to a second set of problems. If gesture is a vehicle through which speakers express their knowledge – and if experimenters can correctly assess that knowledge when attributing problem-solving procedures to children based on their gestures in the explanation task – then, on the rating task, the child should judge procedures she expressed on the explanation task in gesture as more ‘acceptable’ than procedures she did not express at all. Children were found to do just that – even when those procedures were expressed only in gesture and not anywhere in speech. In addition to underestimating an important methodological point (that experimenters’ interpretations of gesture are valid), these findings confirm an important conceptual point – that gestures are not random pairings of gesture with the content of speech. For example, consider gestures produced during a liquid conservation task. Meaning is assigned to such gestures on the basis of the shape and placement of the hand and form of the motion in relation to its accompanying speech. A flat palm held horizontally without movement at the water level of a container is the gesture that typically accompanies height explanations in speech (‘it’s tall’), the meaning ‘height’ is assigned to this gesture form. The form–meaning pairings that result from this process are then used to code gestures produced by other children performing the same task. To ensure independence of the gestures and speech codes, one experimenter codes gestures without listening to the accompanying speech (i.e. with the sound turned off) and another coder speaks without watching gestures (i.e. with the picture turned off). A response is considered a gesture–speech mismatch if, in separate passes through the data, the meaning assigned to gesture is different from the meaning assigned to speech. If, for example, gesture is assigned the meaning ‘height’ by one coder and the accompanying speech is assigned the meaning ‘width’ by another, the response as a whole is considered a mismatch.

Reliability between two experimenters, each of whom transcribes the same videotape independently, is typically high for coding speech, gestures, and the relationship between the two (e.g. on conservation tasks, agreement between two coders ranges from 89% to 94%) (Ref. 3).

Box 3. Spontaneously produced gestures

McNeill (Ref. a) has identified a number of different types of gestures that speakers routinely use when they talk:
1. **‘Iconic’ gestures** transparently capture aspects of the semantic content of speech. For example, when describing how water was poured from a glass into a dish, a child asked for in the air as though pouring from one container to another.
2. **‘Metaphoric’ gestures** are like icons in that they are pictorial; however, the pictorial content is abstract rather than concrete. For example, when announcing that what he is about to narrate is a cartoon, a speaker raised his hands as though offering the listener an object. Just as we speak metaphorically about ‘presenting’ an idea or argument, gestures make an abstract entity (the cartoon) concrete by treating it as a bounded object supported by the hands and presented to the listener.
3. **‘Beat’ gestures** look as though they are beating musical time. The hand moves along with the rhythmical pulsation of speech. Unlike icons and metaphors, beats tend to have the same form regardless of the content (a simple flick of the hand or fingers up and down, or back and forth).
4. **‘Direct’ or pointing gestures** indicate entities in the conversational space, but they can also be used even when there is nothing to point at. For example, a speaker asked ‘where did you come from before?’ while pointing at a space in the room. The space was not, in fact, the listener’s former location but, over the course of the conversation, had come to represent that location.

It is relatively easy to develop a gestural ‘lexicon’ for a particular task. The lexicon can then be used to code gestures in relation to speech in subsequent data. For example, consider speakers use gesture to depict notions ranging from the concrete (e.g. the actions or attributes of cartoon characters) to the abstract (e.g. mathematical notions, such as quantities, factors, and even limits in calculus). Because gesture rests on different representational devices from speech, and is not dictated by standards of form as in speech, it has the potential to offer a different view into the mind of the speaker. Gesture permits the speaker to represent ideas that are compatible with its mimetic and analog format (e.g. shape, size, spatial relationships) – ideas that may be less compatible with the discrete and categorical format underlying speech. Thus, when it accompanies speech, gesture allows speakers to convey thoughts that may not easily fit into the categorical system that their spoken language offers. For example, the gestures accompanying a description of the East Coast of the United States can convey aspects of the coastline that would be difficult, if not impossible, to convey in speech. Gesture then has the potential to display thoughts that are not conveyed in the speech it accompanies (gesture also provides prelinguistic children with a vehicle for expressing thoughts they do not yet have words for, see Box 4).

Consider a six-year-old child attempting to justify his (incorrect) belief that number changes when one of two identical rows of checkers is spread out. The child says that the number of checkers in the spread-out row is now different because you moved them’, thus making it clear, in speech, that he focused on what was done to the checkers. However, in the gestures accompanying this utterance, the child indicates some understanding of the one-to-one correspondence that can be established between the two rows of checkers – he moves a pointing hand back and forth between the two rows, pairing the first checker in row 1 with the first checker in row 2, and so on. The child speaks about how the checkers were moved, but he has also noticed – not necessarily consciously

References

tests the same videotape independently, is typically high for coding speech, gestures, and the relationship between the two (e.g. on conservation tasks, agreement between two coders ranges from 89% to 94%) (Ref. 3).
Box 4. Gesture is a precursor to speech

As a time when children are limited in what they can say, there is another avenue of expression open to them, one that can extend the range of ideas they are able to express. Children can gesture. The earliest gestures children use, typically beginning around 10 months and prior to their first words, are deictic (Ref. 1). For example, a child holds up an object to draw an adult’s attention to that object or, later in development, points at the object. At the same time, some children also use “scene” gestures. For example, a child sponge and close her mouth to represent a fish, or flap her hands to represent a bird (Ref. 1c). “Metaphoric” and “scene” gestures are not produced before speech, and do not appear until later in development (see also Box 5).

Combining gestures and speech within a single utterance can also increase the communicative range available to children. Most of the gesture–speech combinations that young children produce contain gestures that convey information independent of the information conveyed in speech, for example, pointing at an object while naming it. However, young children also produce gestures–speech combinations in which gestures conveys information that is different from the information conveyed in speech. For example, pointing at an object while describing the action to be done on the object in speech (pointing to an apple and saying “eat”) (Ref. 2). Children can gesture, however, or gesturing at an object while describing the action to be done on the object in speech (pointing to an apple and saying “eat”), or gesturing at an object and describing the owner of that object in speech (pointing at a toy while saying “mine”) (Ref. 2d–g).

Children begin producing gestures–speech combinations prior to their first two-word utterances. More impressive is the fact that the age at which children first produce combinations in which gestures and speech convey different information (e.g. “point at apple” predicts the age at which they produce their first word–word combinations (’go point at apple) predicts the age at which they produce their first word–word combinations (’go point at apple) (Ref. 3,4). Thus, the ability to use gestures and speech together to convey different components of a proposition is a harbinger of the ability to convey those components solely within speech.

Given theories about the importance of gesture in the origins of language (Ref. 5), it is interesting to note that chimpanzees in the wild do not use gestures as human children do (Ref. 6). Chimps use gestures to request here-and-now action of another chimpanzee (e.g. raising their arms over their heads to invite another chimpanzee to join them (Ref. 7). In contrast, children use gestures, not only to request, but also to comment on objects in their surroundings (e.g. pointing to comment on distant events). Even chimpanzees who are raised by humans do not interpret points referentially (Ref. 8), nor are mismatches revealed in narratives (e.g. pointing to comment on distant events). Even chimpanzees who are raised by humans do not interpret points referentially (Ref. 9).

Although chimpanzees who are raised by humans do not interpret points referentially (i.e. they do not understand that the point is about a particular object), they do return to point to the gesture in such a way that they can garner a food reward (Ref. 10). Finally, although chimpS who have been taught a communication system do gesture, they rarely use these gestures (i.e. 444 that means the system they have been taught) to comment (Ref. 11). Thus, gestures may serve as a way-station on the road to language, both ontogenetic and evolutionary.

References

- Brown, M., Capirci, O. and Carrer, M.S. (1984) From communication to language in two modalities Cognit. Dev. 9, 23-63
Box 5. How do gesture–speech mismatchers solve problems on-line?

If explanations are an accurate reflection of the processes that take place in problem-solving, mismatching children, who produce two-procedures on each explanation of their math problems (one in speech and a second in gesture), should also activate two procedures when solving each problem. In contrast, matching children, who produce a single procedure per explanation, ought to activate only one procedure when solving each problem. If so, mismatchers work harder to arrive at their incorrect answers than matchers, and should have less cognitive effort left over to tackle other tasks.

Goldin-Meadow et al. (Ref. 1) tested this prediction by first asking children to solve and explain a series of mathematical equivalence problems. Their explanations were used to divide children into matchers and mismatchers. Children then participated in another math task and a concurrent word recall task. Each task, children were given a list of words to remember, either a one-word list (which was not expected to tax cognitive capacity) or a three-word list (which was more likely to strain capacity). Children were also given a math problem to solve while remembering the words – either a hard problem (e.g. \(3 + 6 = 9\), \(_ + 9\)) which tends to elicit two-procedure explanations from mismatchers, and one-procedure explanations from matchers; or an easy problem (e.g. \(4 + 7 + _ = 17\), \(_ + 3\)) which elicits one-procedure explanations from all children.

"Easy" problems were indeed easy, and were solved correctly by all children (Fig. 1). ‘Hard’ problems were hard and solved by none, irrespective of whether the problems were solved along with one-versus three-word lists. The key finding involves the proportion of word lists the children recalled correctly as a function of the type of math problem (easy or hard) that accompanied the task (Fig. 1B). Three points are noteworthy:

1. Both matching and mismatching children were expected to activate a single procedure per problem when solving easy math problems. They should thus expend the same amount of effort on these problems and should recall the same proportion of word lists after solving them – as indeed they did.

2. Matchers were also expected to activate a single procedure when solving hard math problems. Their performance on word recall should therefore not differ for easy versus hard problems – and it did not.

3. In contrast, mismatchers were expected to activate two procedures when solving hard math problems. They should therefore have less capacity left over to recall words after solving these problems and should perform poorly on this task, particularly when capacity is taxed on the three-word list. As predicted, mismatchers recalled significantly fewer three-word lists after solving hard math problems than did matchers.

Thus, when solving the hard math problems, mismatchers carry the extra burden of too many unorganized ideas, a burden which appears to take cognitive effort, leaving less effort available for other tasks.

Reference

Gesture can index cognitive instability

Gesture–speech mismatch is of particular interest to researchers because it is a characteristic of learners who are in transition with respect to a task. Children who produce a relatively large proportion of gesture–speech mismatches when explaining their (incorrect) solutions to a task are particularly likely to benefit from instruction in that task—significantly more than children who produce few mismatches. Mismatch has been found to be a reliable index of readiness-to-learn in conservation40 and mathematical equivalence31 tasks. Thus, when children produce mismatches, they are at risk for learning. They are also, however, at risk for regression. The same proportion of children who progress to a stable correct state when given instruction in the math task, regress to a stable incorrect state when given no instruction.35 Mismatches are apparently in a state of cognitive instability, open to instruction if it is provided but vulnerable to regression if it is not.

If mismatch is indeed a transitional period, we would expect learners to proceed from a stable state, through mismatch, to another stable state but at a higher level. Microgenetic methods were developed so that learners’ progress could be systematically monitored around periods of greater change41. Allbritton and Goldin-Meadow31 used the technique to chart the course of children’s development of mathematical equivalence over the short term. They instructed children individually and observed each child’s step-by-step progress. Focusing on children who gestured, they found that almost all of the children passed through two, or even three, of the following steps in order: (1) a stable state in which the child produced gesture–speech matches conveying incorrect procedures; (2) an unstable state in which the child produced
gesture–speech mismatches; (3) a stable state in which the child again produced gesture–speech matches, now conveying correct procedures.

Thus, as predicted, children tended to proceed through mismatch in acquiring mathematical equivalence. Interestingly, the few children who skipped the mismatching state and progressed directly from an incorrect to a correct matching state were less able to generalize their knowledge than the children who passed through the mismatching state. Skippers appear to learn the concept less thoroughly than those who pass through mismatches.

In gesture in advance of speech when children are in a mismatching state? Mismatches' gestures often convey ideas that are more developed than those they convey in speech41, as illustrated in the math and conservation examples presented thus far. But speech can also convey the mature ideas while gesture lags behind, as is typically found in moral judgment settings.

Do gestures communicate to listeners? We have seen that gesture can communicate unique information about a learner's state, and that researchers have begun to take advantage of this 'window' to the mind. The question is whether the information displayed in gesture is accessible to ordinary listeners not trained in laboratory settings.

This is a controversial question. On the one hand, Kendon51 concludes that listeners do attend to gesture and alter their understanding of utterances accordingly. On the other hand, Krauss and his colleagues47 argue that gesture has little communicative value. However, many of the relevant studies do not control the type of speech that accompanies gesture; without such control it is often difficult to demonstrate definitively that gesture is influencing understanding. Other studies narrow the field too much, exploring only gestures that are selected by observers to be completely redundant with the speech they accompany. Indeed, not enough attention has been paid to gesture that conveys different information from speech. One might expect that it is precisely in situations of gesture–speech mismatch that gesture can play its largest role in communication.

A number of recent studies have found that ordinary listeners can reliably 'read' gesture when it conveys different information from speech40, even when gesture is unedited and fleeting, as it is in natural communication55. Take, for example, an untrained adult asked to assess the child described earlier who, in speech, focused on how the checkers were moved but, in gesture, highlighted the one-to-one alignment

Table 1. Gesture–speech matches and mismatches used by children as they progress towards mastery in two tasks

<table>
<thead>
<tr>
<th>Modality</th>
<th>Matching explanations (incorrect)</th>
<th>Mismatching explanations (both incorrect)</th>
<th>Matching explanations (correct)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample responses to the mathematical equivalence problem 6+4+7=...7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Speech</td>
<td>“I added the 6, the 4 and the 7” (add-to-equal-sign)</td>
<td>“I made this side equal to that side” (equalize-two-sides)</td>
<td></td>
</tr>
<tr>
<td>Gesture</td>
<td>Points at 6 and 4</td>
<td>Points at 6, 4 and right 7 (add-to-equal-sign)</td>
<td>Palm sweeps under left side then under right (equalize-two-sides)</td>
</tr>
<tr>
<td>Sample responses to a liquid-conservation task</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Speech</td>
<td>‘This one’s a tall and this one’s short’ (comparison of heights)</td>
<td>‘This one’s tall and this one’s short’ (comparison of heights)</td>
<td>‘This one’s tall but it’s skinny’ (compensation)</td>
</tr>
<tr>
<td>Gesture</td>
<td>Flat palm marks water level of glass then wider C demarcates width of dish (comparison of widths)</td>
<td>Narrow C demarcates width of glass then wider C demarcates width of dish (comparison of widths)</td>
<td>Flat palm marks water level of glass then narrow C demarcates its width (compensation)</td>
</tr>
</tbody>
</table>

In this task, water is poured from a tall, thin glass into a short, wide dish.
Box 6. Gesture–speech mismatches have variable problem-solving repertoires

Recent research has shown that, at a single moment in time, children frequently have in their repertoires a variety of strategies or approaches to a problem (Refs a–d). Children who tend to produce gesture–speech mismatches produce more than one notion on a single problem and, in this sense, are variable in their responses. However, do these children also have variability in their repertoires when taken as a whole? To answer this question, Goldin-Meadow, Alibali and Church (Ref. c) determined how many different problem-solving procedures a child produced across a set of six math problems. They also determined the modality (or modalities) in which each different procedure was produced: in speech and never in gesture; in gesture and never in speech; or in both speech and gesture (although not necessarily on the same problem). The calculations were done separately for children who produced a large proportion of mismatches, and for children who produced few mismatches. Overall, mismatchers produced significantly more different kinds of procedures than matchers (Fig. 1). Thus, they had more variability in their repertoires, which might well account for their ‘vulnerability’ to instruction.

In terms of modality in which these procedures appeared, it is interesting to note that neither group of children produced many procedures in speech alone. Almost all of the information that the children perceived about the task was accessible to gesture, either with or without speech. The groups also did not differ in the number of different procedures they produced in both speech and gesture. While the groups did differ, however, was in the number of different procedures they produced in gesture alone. The mismatches produced significantly more procedures in gesture (and not in speech) than the matchers. Thus, the ‘extra’ procedures that the mismatches had in their repertoires were all unique to gesture.

References

Fig. 1. Number of different problem-solving procedures in the repertoires of mismatching and matching children. A procedure was classified as a function of the modality (or modalities) in which it was produced by a child across six problems. Overall, mismatchers produced significantly more types of procedures than matchers, although the distribution varied in the two groups, particularly in procedures produced in gesture but not speech (dark grey). Procedures in speech and gesture light grey; procedures in speech but not gesture, white. (Adapted from Ref. c.)

between the checkers in the rows. The adult attributed to this child reasoning based not only on the fact that the checkers had been moved, but also on one-to-one correspondence. Ordinary listeners can thus take advantage of the unique insight gesture offers into the thoughts speakers have, but do not express in words.

Given that a listener can extract substantive information from gesture, it is perhaps not surprising that speech can be affected by the gestural company it keeps. Gesture can facilitate comprehension of a spoken message when it conveys the same meaning (gesture–speech match). But gesture can also impede comprehension of a spoken message when it conveys a different message (gesture–speech mismatch). Gesture thus has the potential to play a role in cognitive change. Gesture can signal to those who interact with a learner that a particular notion is in the learner’s repertoire. Listeners may then alter their behavior accordingly, perhaps giving explicit instruction in that notion if it is correct, or providing input that encourages the learner to abandon the notion if it is misguided. If gesture can play this type of role in spontaneous interaction, listeners may be able to shape the day-to-day input they receive just by moving their hands.

Do gestures function for speakers? We have been proceeding as though communication is gesture’s only function – but is it? The fact that gestures communicate to listeners does not preclude the possibility that gesture functions for speakers as well. After all, speakers gesture when

References

c

d

Gesturing while explaining a math task improves performance listeners who are themselves blind. Even though they themselves have never seen gesture and the child described earlier who demonstrated a clear under-developed enough to be encoded in speech. Take, for example, that lend themselves to these formats and that are not yet de-coded in speech. Gesture reduces cognition in science lessons frequently use gesture to foreshadow the can access new thoughts. For example, children participating in other tasks. For example, pointing improves young chil-dren's performance on counting tasks particularly if the point-ing is done by the children themselves. As another example, gesturing while explaining a math task improves performance in one-to-one correspondence between checkers in his gestures, but seemed unable to articulate this notion in speech. The case with which the two rows of checkers can be paired in gesture may have facilitated the child's expression of this notion. Once having entered the child's repertoire, this new-found idea can begin to change the system. At some point, the child will have to reconcile his belief that the number of checkers changed with the fact that the checkers in the moved and unmoved rows can be put into one-to-one alignment. By offering an alternative route in which de-veloping ideas can be tried out and expressed, gesture may itself facilitate the process of change.

Gesture may also have an advantage over speech in that novel (and perhaps contradictory) information can be brought into a learner's repertoire without disrupting the current sys-tem. Spontaneous gestures are not part of a culturally rec-ognized system and thus rarely are subject to comment and criticism. As a result, gesture is an ideal modality within which to consider the first time notions that are not fully developed. Not only are the notions conveyed in gesture likely to go unchallenged by others, but they are also likely to go unchallenged by oneself. A speaker can unknowingly 'speak in' an idea in gesture that does not cohere well with the set of ideas the speaker routinely expresses in speech. Gesture may be a perfect place to try out innovative ideas.

Box 7. Teachers gesture in math tutorials and children pay attention

Gesture is understood by listeners asked to observe, but not participate, in an interaction. However, in order to argue that gesture plays an important role in communication, it is essential to demonstrate that listeners can 'read' gesture when they themselves are participants in the conversation. Goldin-Meadow, Kim and Singer (Ref. a) asked teachers to instruct a series of children individ-ually in mathematical equivalence and videotaped the tutorials. As the teachers did most of the talking and gesturing in the interactions, the researchers explored how the children responded to the problem-solving procedures that teachers produced in speech and gesture. A child was conservatively assumed to understand the teacher's procedure when the child responded by repeating or paraphrasing that procedure.

Gesture was found both to help and to undermine the child's compre-hension of teacher's speech (Fig. IA). Children were more likely to repeat a pro-cEDURE the teacher produced in speech when that speech was accompanied by a matching gesture than when it was accompanied by no gesture at all. When gesture conveys the same meaning as speech, perhaps surprisingly, it helps the listener arrive at that message. Conversely, children were also likely to repeat a procedure the teacher produced in speech when that speech was accompanied by a mismatching gesture than when it was accompanied by no gesture at all.

When gesture conveys a different message from speech, it detracts from the listener's ability to arrive at the message in speech. Were children able to glean substantive information from the teacher's go-ments? When the teacher procedures were expressed uniquely in gesture (i.e. in the gesture component of a mismatch) children reiterated these procedures 20% of the time (Fig. IB). Although this might seem like a small proportion, note that child intonations followed teacher procedure produced uniquely in speech only 25% of the time (compare the dark gray bars in Fig. IA and IB). Moreover, children frequently 'translate' procedures that the teacher produced uniquely in gesture into their own speech, thus clearly demonstrating that they fully understood their meaning. Children were able to glean information from teachers' gestures even when they were active participants in the interaction.

Indeed, there is anecdotal evidence from the videotaped teacher–child tu-torials that children zero in on a teacher's gestures, sometimes to their own dis-advantage. For example, while tiding a child to make both sides of the equa-tion 6+6=7_._. seven equal, a teacher inadvertently pointed at the fourth number in the problem—a series of gestures children typically produce when they add all of the numbers to get the solution. The child ignored the teacher's speech and focused on her gesture. In the next turn, much to the teacher's surprise, the child gave 24 as his solution, the solution obtained by adding up all four numbers. Gesture is a potentially powerful source of input for children and adults alike.

Reference

Fig. 1. Mean proportion of child reiterations following speech or gesture of teachers' problem-solving procedures. (A) The proportion of child reiterations following the teacher's speech when accompanied by matching gesture (light grey), no gesture (white), or mismatching gesture (dark grey). Error bars indicate ±1 SE. (B) The proportion of child reiterations following the teacher's gesture when accompanied by mismatching speech (i.e. gesture component of a mismatch). Child reiterations followed procedures produced in the gesture component of a mismatch 25% of the time—approximately as often as they followed procedures produced in the speech component. (Modified from Ref. a.)

Goldin-Meadow – Gesture in communication and thinking

Review

427
Outstanding questions

• Deaf children of hearing parents can invent the rudiments of a language-like system without the benefit of a conventional language model, or even a willing communication partner (the children’s hearing parents are committed to teaching them to speak). How far can an individual child (as opposed to a society) go in fashioning a linguistic system out of gesture? Are there certain types of constructions and uses that can only be introduced into a language system with group support?

• What are the forces that shape the particular linguistic patterns found in the deaf children’s gesture systems? They are not shaped by conventional language, nor are they modeled after their hearing parents’ spontaneous gestures. One possibility is that the patterns reflect the way children structure events in general or, more specifically, the way they structure events for the purposes of communication.

• The spontaneous gestures that speakers use along with their talk do not feel as though they are consciously produced – one is not typically aware of having gestured. What would happen if speakers were forced to be aware of their gestures? Would those gestures no longer have privileged access to the speaker’s unspoken thoughts?

• What are the contexts in which listeners are able to ‘read’ gesture? Listeners typically have difficulty apprehending both of the messages conveyed in a mismatch (the message in speech, and the message in gesture). What determines which of the two messages will be read? Are there conditions under which listeners can grasp both messages?

• Does gesturing help speakers think? There is growing evidence that gestures can facilitate word recall and help conserve cognitive effort. Are gestures introduced into a language system with group support?

• Deaf children of hearing parents can invent the rudiments of a language-like system without the benefit of a conventional language model, or even a willing communication partner (the children’s hearing parents are committed to teaching them to speak). How far can an individual child (as opposed to a society) go in fashioning a linguistic system out of gesture? Are there certain types of constructions and uses that can only be introduced into a language system with group support?

• What are the forces that shape the particular linguistic patterns found in the deaf children’s gesture systems? They are not shaped by conventional language, nor are they modeled after their hearing parents’ spontaneous gestures. One possibility is that the patterns reflect the way children structure events in general or, more specifically, the way they structure events for the purposes of communication.

• The spontaneous gestures that speakers use along with their talk do not feel as though they are consciously produced – one is not typically aware of having gestured. What would happen if speakers were forced to be aware of their gestures? Would those gestures no longer have privileged access to the speaker’s unspoken thoughts?

• What are the contexts in which listeners are able to ‘read’ gesture? Listeners typically have difficulty apprehending both of the messages conveyed in a mismatch (the message in speech, and the message in gesture). What determines which of the two messages will be read? Are there conditions under which listeners can grasp both messages?

• Does gesturing help speakers think? There is growing evidence that gestures can facilitate word recall and help conserve cognitive effort. Are gestures introduced into a language system with group support?

• Deaf children of hearing parents can invent the rudiments of a language-like system without the benefit of a conventional language model, or even a willing communication partner (the children’s hearing parents are committed to teaching them to speak). How far can an individual child (as opposed to a society) go in fashioning a linguistic system out of gesture? Are there certain types of constructions and uses that can only be introduced into a language system with group support?

• What are the forces that shape the particular linguistic patterns found in the deaf children’s gesture systems? They are not shaped by conventional language, nor are they modeled after their hearing parents’ spontaneous gestures. One possibility is that the patterns reflect the way children structure events in general or, more specifically, the way they structure events for the purposes of communication.

• The spontaneous gestures that speakers use along with their talk do not feel as though they are consciously produced – one is not typically aware of having gestured. What would happen if speakers were forced to be aware of their gestures? Would those gestures no longer have privileged access to the speaker’s unspoken thoughts?

• What are the contexts in which listeners are able to ‘read’ gesture? Listeners typically have difficulty apprehending both of the messages conveyed in a mismatch (the message in speech, and the message in gesture). What determines which of the two messages will be read? Are there conditions under which listeners can grasp both messages?

• Does gesturing help speakers think? There is growing evidence that gestures can facilitate word recall and help conserve cognitive effort. Are gestures introduced into a language system with group support?

• Deaf children of hearing parents can invent the rudiments of a language-like system without the benefit of a conventional language model, or even a willing communication partner (the children’s hearing parents are committed to teaching them to speak). How far can an individual child (as opposed to a society) go in fashioning a linguistic system out of gesture? Are there certain types of constructions and uses that can only be introduced into a language system with group support?

• What are the forces that shape the particular linguistic patterns found in the deaf children’s gesture systems? They are not shaped by conventional language, nor are they modeled after their hearing parents’ spontaneous gestures. One possibility is that the patterns reflect the way children structure events in general or, more specifically, the way they structure events for the purposes of communication.

• The spontaneous gestures that speakers use along with their talk do not feel as though they are consciously produced – one is not typically aware of having gestured. What would happen if speakers were forced to be aware of their gestures? Would those gestures no longer have privileged access to the speaker’s unspoken thoughts?

• What are the contexts in which listeners are able to ‘read’ gesture? Listeners typically have difficulty apprehending both of the messages conveyed in a mismatch (the message in speech, and the message in gesture). What determines which of the two messages will be read? Are there conditions under which listeners can grasp both messages?

• Does gesturing help speakers think? There is growing evidence that gestures can facilitate word recall and help conserve cognitive effort. Are gestures introduced into a language system with group support?

• Deaf children of hearing parents can invent the rudiments of a language-like system without the benefit of a conventional language model, or even a willing communication partner (the children’s hearing parents are committed to teaching them to speak). How far can an individual child (as opposed to a society) go in fashioning a linguistic system out of gesture? Are there certain types of constructions and uses that can only be introduced into a language system with group support?

• What are the forces that shape the particular linguistic patterns found in the deaf children’s gesture systems? They are not shaped by conventional language, nor are they modeled after their hearing parents’ spontaneous gestures. One possibility is that the patterns reflect the way children structure events in general or, more specifically, the way they structure events for the purposes of communication.

• The spontaneous gestures that speakers use along with their talk do not feel as though they are consciously produced – one is not typically aware of having gestured. What would happen if speakers were forced to be aware of their gestures? Would those gestures no longer have privileged access to the speaker’s unspoken thoughts?

• What are the contexts in which listeners are able to ‘read’ gesture? Listeners typically have difficulty apprehending both of the messages conveyed in a mismatch (the message in speech, and the message in gesture). What determines which of the two messages will be read? Are there conditions under which listeners can grasp both messages?

• Does gesturing help speakers think? There is growing evidence that gestures can facilitate word recall and help conserve cognitive effort. Are gestures introduced into a language system with group support?

• Deaf children of hearing parents can invent the rudiments of a language-like system without the benefit of a conventional language model, or even a willing communication partner (the children’s hearing parents are committed to teaching them to speak). How far can an individual child (as opposed to a society) go in fashioning a linguistic system out of gesture? Are there certain types of constructions and uses that can only be introduced into a language system with group support?

• What are the forces that shape the particular linguistic patterns found in the deaf children’s gesture systems? They are not shaped by conventional language, nor are they modeled after their hearing parents’ spontaneous gestures. One possibility is that the patterns reflect the way children structure events in general or, more specifically, the way they structure events for the purposes of communication.

• The spontaneous gestures that speakers use along with their talk do not feel as though they are consciously produced – one is not typically aware of having gestured. What would happen if speakers were forced to be aware of their gestures? Would those gestures no longer have privileged access to the speaker’s unspoken thoughts?

• What are the contexts in which listeners are able to ‘read’ gesture? Listeners typically have difficulty apprehending both of the messages conveyed in a mismatch (the message in speech, and the message in gesture). What determines which of the two messages will be read? Are there conditions under which listeners can grasp both messages?

• Does gesturing help speakers think? There is growing evidence that gestures can facilitate word recall and help conserve cognitive effort. Are gestures introduced into a language system with group support?
Review

Goldin-Meadow – Gesture in communication and thinking

Alibali, M.W. and Barafox, A.A. The function of gestures in learning to count more than keeping track Cognit. Instruct. (in press).

Goldin-Meadow, S. Giving the mind a hand: the role of gesture in cognitive change, in Metacognition of Cognitive Development: Behavioral and Neural Perspectives (McDermott, J. and Siegler, R.S., eds), Erlbaum (in press).

TICS Editorial Policy

Trends in Cognitive Sciences is indispensable reading for all interested in this diverse field. The journal carries a core of authoritative Reviews, written in an easily accessible style by leading authors, summarizing the exciting developments of the subjects you need to know about. Accompanying the Reviews are a range of other types of article. The Comment section offers short updates and discussions of one or two ground-breaking and important primary papers. The authors of the primary papers have the opportunity of replying to the Comments, thus extending the dialogue on their work. Monitor pieces summarize, in 100-200 words, recently published papers. Meeting reports convey the excitement of recent conferences or seminars, focusing on the latest developments and the discussions surrounding them. Opinion articles are reviews of subjects written from a personal slant, and therefore highlight some of the controversies in cognition. Books etcetera features stimulating essay-reviews of recent publications, whether books, software, CD-ROMs, films, etcetera. And a list of books received for review will be published regularly. Letters stimulated by any of the articles published in TICS are welcome. Authors will be offered the chance to reply to any points raised.