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SUMMARY

Humans can see and name thousands of distinct

object and action categories, so it is unlikely that

each category is represented in a distinct brain

area. A more efficient scheme would be to represent

categories as locations in a continuous semantic

space mapped smoothly across the cortical surface.

To search for such a space, we used fMRI tomeasure

human brain activity evoked by natural movies. We

then used voxelwise models to examine the cortical

representation of 1,705 object and action categories.

The first few dimensions of the underlying semantic

space were recovered from the fit models by prin-

cipal components analysis. Projection of the recov-

ered semantic space onto cortical flat maps shows

that semantic selectivity is organized into smooth

gradients that cover much of visual and nonvisual

cortex. Furthermore, both the recovered semantic

space and the cortical organization of the space

are shared across different individuals.

INTRODUCTION

Previous fMRI studies have suggested that some categories of

objects and actions are represented in specific cortical areas.

Categories that have been functionally localized include faces

(Avidan et al., 2005; Clark et al., 1996; Halgren et al., 1999; Kanw-

isher et al., 1997; McCarthy et al., 1997; Rajimehr et al., 2009;

Tsao et al., 2008), body parts (Downing et al., 2001; Peelen

and Downing, 2005; Schwarzlose et al., 2005), outdoor scenes

(Aguirre et al., 1998; Epstein and Kanwisher, 1998), and human

body movements (Peelen et al., 2006; Pelphrey et al., 2005).

However, humans can recognize thousands of different cate-

gories of objects and actions. Given the limited size of the human

brain, it is unreasonable to expect that every one of these cate-

gories is represented in a distinct brain area. Indeed, fMRI

studies have failed to identify dedicated functional areas for

many common object categories including household objects

(Haxby et al., 2001), animals and tools (Chao et al., 1999),

food, clothes, and so on (Downing et al., 2006).

An efficient way for the brain to represent object and action

categories would be to organize them into a continuous space

that reflects the semantic similarity between categories. A

continuous semantic space could be mapped smoothly onto

the cortical sheet so that nearby points in cortex would represent

semantically similar categories. No previous study has found

a general semantic space that organizes the representation of

all visual categories in the human brain. However, several studies

have suggested that single locations on the cortical surface

might represent many semantically related categories (Connolly

et al., 2012; Downing et al., 2006; Edelman et al., 1998; Just

et al., 2010; Konkle and Oliva, 2012; Kriegeskorte et al., 2008;

Naselaris et al., 2009; Op de Beeck et al., 2008; O’Toole et al.,

2005). Some studies have also proposed likely dimensions

that organize these representations, such as animals versus

nonanimals (Connolly et al., 2012; Downing et al., 2006; Kriege-

skorte et al., 2008; Naselaris et al., 2009), manipulation versus

shelter versus eating (Just et al., 2010), large versus small (Konkle

and Oliva, 2012), or hand- versus mouth- versus foot-related

actions (Hauk et al., 2004).

To determine whether a continuous semantic space underlies

category representation in the human brain, we collected blood-

oxygen-level-dependent (BOLD) fMRI responses from five

subjects while they watched several hours of natural movies.

Natural movies were used because they contain many of the

object and action categories that occur in daily life, and they

evoke robust BOLD responses (Bartels and Zeki, 2004; Hasson

et al., 2004, 2008; Nishimoto et al., 2011). After data collection,

we used terms from the WordNet lexicon (Miller, 1995) to label

1,364 common objects (i.e., nouns) and actions (i.e., verbs) in

the movies (see Experimental Procedures for details of labeling

procedure and see Figure S1 available online for examples of

typical labeled clips). WordNet is a set of directed graphs that

represent the hierarchical ‘‘is a’’ relationships between object

or action categories. The hierarchical relationships in WordNet

were then used to infer the presence of an additional 341

higher-order categories (e.g., a scene containing a dog must

also contain a canine). Finally, we used regularized linear regres-

sion (see Experimental Procedures for details; Kay et al., 2008;

Mitchell et al., 2008; Naselaris et al., 2009; Nishimoto et al.,
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2011) to characterize the response of each voxel to each of the

1,705 object and action categories (Figure 1). The linear regres-

sion procedure produced a set of 1,705 model weights for each

individual voxel, reflecting how each object and action category

influences BOLD responses in each voxel.

RESULTS

Category Selectivity for Individual Voxels

Our modeling procedure produces detailed information about

the representation of categories in each individual voxel in the

brain. Figure 2A shows the category selectivity for one voxel

located in the left parahippocampal place area (PPA) of subject

A.V. The model for this voxel shows that BOLD responses are

strongly enhanced by categories associated with man-made

objects and structures (e.g., ‘‘building,’’ ‘‘road,’’ ‘‘vehicle,’’ and

‘‘furniture’’), weakly enhanced by categories associated with

outdoor scenes (e.g., ‘‘hill,’’ ‘‘grassland,’’ and ‘‘geological forma-

tion’’) and humans (e.g., ‘‘person’’ and ‘‘athlete’’), and weakly

suppressed by nonhuman biological categories (e.g., ‘‘body

parts’’ and ‘‘birds’’). This result is consistent with previous

reports that PPA most strongly represents information about

outdoor scenes and buildings (Epstein and Kanwisher, 1998).

Figure 2B shows category selectivity for a second voxel

located in the right precuneus (PrCu) of subject A.V. The model

shows that BOLD responses are strongly enhanced by

categories associated with social settings (e.g., people, commu-

nication verbs, and rooms) and suppressed by many other

categories (e.g., ‘‘building,’’ ‘‘city,’’ ‘‘geological formation,’’ and

‘‘atmospheric phenomenon’’). This result is consistent with an

earlier finding that PrCu is involved in processing social scenes

(Iacoboni et al., 2004).

A Semantic Space for Representation of Object and

Action Categories

We used principal components analysis (PCA) to recover a

semantic space from the category model weights in each

subject. PCA ensures that categories that are represented by

similar sets of cortical voxels will project to nearby points in the

estimated semantic space, while categories that are represented

very differently will project to different points in the space. To

maximize the quality of the estimated space, we included only

voxels that were significantly predicted (p < 0.05, uncorrected)

by the categorymodel (see Experimental Procedures for details).

Because humans can perceive thousands of categories

of objects and actions, the true semantic space underlying

Figure 1. Schematic of the Experiment and Model

Subjects viewed 2 hr of natural movies while BOLD responses weremeasured using fMRI. Objects and actions in themovies were labeled using 1,364 terms from

the WordNet lexicon (Miller, 1995). The hierarchical ‘‘is a’’ relationships defined by WordNet were used to infer the presence of 341 higher-order categories,

providing a total of 1,705 distinct category labels. A regularized, linearized finite impulse response regression model was then estimated for each cortical voxel

recorded in each subject’s brain (Kay et al., 2008; Mitchell et al., 2008; Naselaris et al., 2009; Nishimoto et al., 2011). The resulting category model weights

describe how various object and action categories influence BOLD signals recorded in each voxel. Categories with positive weights tend to increase BOLD, while

those with negative weights tend to decrease BOLD. The response of a voxel to a particular scene is predicted as the sum of the weights for all categories in that

scene.
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category representation in the brain probably has many dimen-

sions. However, given the limitations of fMRI and a finite stimulus

set, we expect that we will only be able to recover the first few

dimensions of the semantic space for each individual brain and

fewer still dimensions that are shared across individuals. Thus,

of the 1,705 semantic PCs produced by PCA on the voxel

weights, only the first few will resemble the true underlying

semantic space, while the remainder will be determined mostly

by the statistics of the stimulus set and noise in the fMRI data.

To determine which PCs are significantly different from

chance, we compared the semantic PCs to the PCs of the cate-

gory stimulus matrix (see Experimental Procedures for details of

why the stimulus PCs are an appropriate null hypothesis). First,

we tested the significance of each subject’s own categorymodel

weight PCs. If there is a semantic space underlying category

representation in the subject’s brain, then we should find that

some of the subject’s model weight PCs explainmore of the vari-

ance in the subject’s category model weights than is explained

by the stimulus PCs. However, if there is no semantic space

underlying category representation in the subject’s brain, then

the stimulus PCs should explain the same amount of variance

in the category model weights as do the subject’s PCs. The

results of this analysis are shown in Figure 3. Six to eight PCs

from individual subjects explain significantly more variance in

category model weights than do the stimulus PCs (p < 0.001,

bootstrap test). These individual subject PCs explain a total of

30%–35% of the variance in category model weights. Thus,

our fMRI data are sufficient to recover semantic spaces for indi-

vidual subjects that consist of six to eight dimensions.

Second, we used the same procedure to test the significance

of group PCs constructed using data combined across subjects.

To avoid overfitting, we constructed a separate group semantic

space for each subject using combined data from the other four

subjects. If the subjects share a common semantic space, then

some of the group PCs should explain more of the variance in the

selected subject’s category model weights than do the stimulus

PCs. However, if the subjects do not share a common semantic

space, then the stimulus PCs should explain the same amount of

variance in the categorymodel weights as do the group PCs. The

results of this analysis are also shown in Figure 3. The first four

group PCs explain significantly more variance (p < 0.001, boot-

strap test) than do the stimulus PCs in four out of five subjects.

Figure 2. Category Selectivity for Two Individual Voxels

Each panel shows the predicted response of one voxel to each of the 1,705 categories, organized according to the graphical structure of WordNet. Links indicate

‘‘is a’’ relationships (e.g., an athlete is a person); some relationships used in the model are omitted for clarity. Eachmarker represents a single noun (circle) or verb

(square). Red markers indicate positive predicted responses and blue markers indicate negative predicted responses. The area of each marker indicates pre-

dicted response magnitude. The prediction accuracy of each voxel model, computed as the correlation coefficient (r) between predicted and actual responses, is

shown in the bottom right of each panel along with model significance (see Results for details).

(A) Category selectivity for one voxel located in the left hemisphere parahippocampal place area (PPA). The category model predicts that movies will evoke

positive responses when ‘‘structures,’’ ‘‘buildings,’’ ‘‘roads,’’ ‘‘containers,’’ ‘‘devices,’’ and ‘‘vehicles’’ are present. Thus, this voxel appears to be selective for

scenes that contain man-made objects and structures (Epstein and Kanwisher, 1998).

(B) Category selectivity for one voxel located in the right hemisphere precuneus (PrCu). The category model predicts that movies will evoke positive responses

from this voxel when ‘‘people,’’ ‘‘carnivores,’’ ‘‘communication verbs,’’ ‘‘rooms,’’ or ‘‘vehicles’’ are present and negative responses when movies contain

‘‘atmospheric phenomena,’’ ‘‘locations,’’ ‘‘buildings,’’ or ‘‘roads.’’ Thus, this voxel appears to be selective for scenes that contain people or animals interacting

socially (Iacoboni et al., 2004).
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These four group PCs explain on average 19% of the total vari-

ance, 72% as much as do the first four individual subject PCs.

In contrast, the first four stimulus PCs only explain 10% of the

total variance, 38% as much variance as the individual subject

PCs. This result suggests that the first four group PCs describe

a semantic space that is shared across individuals.

Third, we determined how much stimulus-related information

is captured by the group PCs and full category model. For

each model, we quantified stimulus-related information by

testing whether the model could distinguish among BOLD

responses to different movie segments (Kay et al., 2008; Nishi-

moto et al., 2011; see Experimental Procedures for details).

Models using 4–512 group PCs were tested by projecting the

category model weights for 2,000 voxels (selected using the

training data set) onto the group PCs. Then, the projected model

weights were used to predict responses to the validation stimuli.

We then tried to match the validation stimuli to observed BOLD

responses by comparing the observed and predicted responses.

The same identification procedure was repeated for the full cate-

gory model.

The results of this analysis are shown in Figure S2. The full

category model correctly identifies an average of 76% of stimuli

across subjects (chance is 1.9%). Models based on 64 or more

group PCs correctly identify an average of 74% of the stimuli but

incorporate information that we know cannot be distinguished

from the stimulus PCs. A model based on the four significant

group PCs correctly identifies 49% of the stimuli, roughly two-

thirds as many as the full model. These results show that the

four-PC group space does not capture all of the stimulus-related

information present in the full category model, indicating that the

true semantic space is likely to have more than four dimensions.

Further experiments will be required to determine these other

semantic dimensions.

To visualize the group semantic space, we formed a robust

estimate by pooling data from all five subjects (for a total of

49,685 voxels) and then applying PCA to the combined data.

Visualization of the Semantic Space

The previous results demonstrate that object and action cate-

gories are represented in a semantic space consisting of at

least four dimensions and that this space is shared across indi-

viduals. To understand the structure of the group semantic

space, we visualized it in two different ways. First, we projected

the 1,705 coefficients of each group PC onto the graph defined

byWordNet (Figure 4). The first PC (shown in Figure 4A) appears

to distinguish between categories that have high stimulus energy

(e.g., moving objects like ‘‘person,’’ ‘‘vehicle,’’ and ‘‘animal’’) and

those that have low stimulus energy (e.g., stationary objects like

‘‘sky,’’ ‘‘city,’’ ‘‘building,’’ and ‘‘plant’’). This is not surprising, as

the first PC should reflect the stimulus dimension with the great-

est influence on brain activity, and stimulus energy is already

known to have a large effect on BOLD signals (Fox et al., 2009;

Nishimoto et al., 2011; Smith et al., 1998).

We then visualized the second, third, and fourth group PCs

simultaneously using a three-dimensional (3D) colormap pro-

jected onto the WordNet graph. A color was assigned to each

of the 1,705 categories according to the following scheme: the

category coefficient in the second PC determined the value of

the red channel, the third PC determined the green channel,

and the fourth PC determined the blue channel (see Figure 4B;

see Figure S3 for individual PCs). This scheme assigns similar

colors to categories that are represented similarly in the brain.

Figure 4C shows the second, third, and fourth PCs projected

onto the WordNet graph. Here humans, human body parts, and

communication verbs (e.g., ‘‘gesticulate’’ and ‘‘talk’’) appear in

shades of green. Other animals appear yellow and green-yellow.

Nonliving objects such as ‘‘vehicles’’ appear pink and purple, as

do movement verbs (e.g., ‘‘run’’), outdoor categories (e.g., ‘‘hill,’’

‘‘city,’’ and ‘‘grassland’’), and paths (e.g., ‘‘road’’). Indoor cate-

gories (e.g., ‘‘room,’’ ‘‘door,’’ and ‘‘furniture’’) appear in blue

and indigo. This figure suggests that semantically related cate-

gories (e.g., ‘‘person’’ and ‘‘talking’’) are represented more simi-

larly than unrelated categories (e.g., ‘‘talking’’ and ‘‘kettle’’).

Figure 3. Amount of Model Variance Ex-

plained by Individual Subject and Group

Semantic Spaces

Principal components analysis (PCA) was used to

recover a semantic space from category model

weights in each subject. Here we show the vari-

ance explained in the category model weights by

each of the 20 most important PCs. Orange lines

show the amount of variance explained in cate-

gory model weights by each subject’s own PCs

and blue lines show the variance explained by PCs

of combined data from other subjects. Gray lines

show the variance explained by the stimulus PCs,

which serve as an appropriate null hypothesis (see

text and Experimental Procedures for details).

Error bars indicate 99% confidence intervals (the

confidence intervals for the subjects’ own PCs and

group PCs are very small). Hollow markers indi-

cate subject or group PCs that explain significantly

more variance (p < 0.001, bootstrap test) than the stimulus PCs. The first four group PCs explain significantly more variance than the stimulus PCs for four

subjects. Thus, the first four group PCs appear to comprise a semantic space that is common across most individuals and that cannot be explained by stimulus

statistics. Furthermore, the first six to nine individual subject PCs explain significantly more variance than the stimulus PCs (p < 0.001, bootstrap test). This

suggests that while the subjects share broad aspects of semantic representation, finer-scale semantic representations are subject specific.
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To better understand the overall structure of the semantic

space, we created an analogous figure in which category posi-

tion is determined by the PCs instead of theWordNet graph. Fig-

ure 5 shows the location of all 1,705 categories in the space

formed by the second, third, and fourth group PCs (Movie S1

shows the categories in 3D). Here, categories that are repre-

sented similarly in the brain are plotted at nearby positions. Cate-

gories that appear near the origin have small PC coefficients and

thus are generally weakly represented or are represented simi-

larly across voxels (e.g., ‘‘laptop’’ and ‘‘clothing’’). In contrast,

categories that appear far from the origin have large PC coeffi-

cients and thus are represented strongly in some voxels and

weakly in others (e.g., ‘‘text,’’ ‘‘talk,’’ ‘‘man,’’ ‘‘car,’’ ‘‘animal,’’

and ‘‘underwater’’). These results support earlier findings that

categories such as faces (Avidan et al., 2005; Clark et al.,

1996; Halgren et al., 1999; Kanwisher et al., 1997; McCarthy

et al., 1997; Rajimehr et al., 2009; Tsao et al., 2008) and text (Co-

hen et al., 2000) are represented strongly and distinctly in the

human brain.

Interpretation of the Semantic Space

Earlier studies have suggested that animal categories (including

people) are represented distinctly from nonanimal categories

(Connolly et al., 2012; Downing et al., 2006; Kriegeskorte et al.,

2008; Naselaris et al., 2009). To determine whether hypothesized

semantic dimensions such as animal versus nonanimal are

captured by the group semantic space, we compared each of

the group semantic PCs to nine hypothesized semantic dimen-

sions. For each hypothesized dimension, we first assigned a

value to each of the 1,705 categories. For example, for the

dimension animal versus nonanimal, we assigned the value +1

to all animal categories and the value 0 to all nonanimal cate-

gories. Then we computed how much variance each hypothe-

sized dimension explained in each of the group PCs. If

Figure 4. Graphical Visualization of the Group Semantic Space

(A) Coefficients of all 1,705 categories in the first group PC, organized according to the graphical structure of WordNet. Links indicate ‘‘is a’’ relationships (e.g., an

athlete is a person); some relationships used in the model have been omitted for clarity. Each marker represents a single noun (circle) or verb (square). Red

markers indicate positive coefficients and blue indicates negative coefficients. The area of each marker indicates the magnitude of the coefficient. This PC

distinguishes between categories with high stimulus energy (e.g., moving objects like ‘‘person’’ and ‘‘vehicle’’) and those with low stimulus energy (e.g., stationary

objects like ‘‘sky’’ and ‘‘city’’).

(B) The three-dimensional RGB colormap used to visualize PCs 2–4. The category coefficient in the second PC determined the value of the red channel, the third

PC determined the green channel, and the fourth PC determined the blue channel. Under this scheme, categories that are represented similarly in the brain are

assigned similar colors. Categories with zero coefficients appear neutral gray.

(C) Coefficients of all 1,705 categories in group PCs 2–4, organized according to theWordNet graph. The color of eachmarker is determined by theRGBcolormap

in (B). Marker sizes reflect the magnitude of the three-dimensional coefficient vector for each category. This graph shows that categories thought to be

semantically related (e.g., ‘‘athletes’’ and ‘‘walking’’) are represented similarly in the brain.
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a hypothesized dimension provides a good description of one

of the group PCs, then that dimension will explain a large fraction

of the variance in that PC. If a hypothesized dimension is

captured by the group semantic space but does not line up

exactly with one of the PCs, then that dimension will explain vari-

ance in multiple PCs.

The comparison between the group PCs and hypothesized

semantic dimensions is shown in Figure 6. The first PC is best ex-

plained by a dimension that contrasts mobile categories (people,

nonhuman animals, and vehicles) with nonmobile categories.

The first PC is also well explained by a dimension that is an

extension of a previously reported ‘‘animacy’’ continuum (Con-

nolly et al., 2012). Our animacy dimension assigns the highest

weight to people, decreasing weights to other mammals, birds,

reptiles, fish, and invertebrates, and zero weight to all nonanimal

categories. The second PC is best explained by a dimension that

contrasts categories associated with social interaction (people

and communication verbs) with all other categories. The third

PC is best explained by a dimension that contrasts categories

associated with civilization (people, man-made objects, and

vehicles) with categories associated with nature (nonhuman

animals). The fourth PC is best explained by a dimension that

contrasts biological categories (animals, plants, people, and

body parts) with nonbiological categories, as well as a similar

dimension that contrasts animal categories (including people)

with nonanimal categories. These results provide quantitative

interpretations for the group PCs and show that many hypothe-

sized semantic dimensions are captured by the group semantic

space.

The results shown in Figure 6 also suggest that some hypoth-

esized semantic dimensions are not captured by the group

semantic space. The contrast between place categories (build-

ings, roads, outdoor locations, and geological features) and

nonplace categories is not captured by any group PC. This is

surprising because the representation of place categories is

thought to be of primary importance to many brain areas,

including the PPA (Epstein and Kanwisher, 1998), retrosplenial

cortex (RSC; Aguirre et al., 1998), and temporo-occipital sulcus

(TOS; Nakamura et al., 2000; Hasson et al., 2004). Our results

may appear different from the results of earlier studies of place

representation because those earlier studies used static images

and not movies.

Another hypothesized semantic dimension that is not cap-

tured by our group semantic space is real-world object size

(Konkle and Oliva, 2012). The object size dimension assigns

a high weight to large objects (e.g., ‘‘boat’’), medium weight to

human-scale objects (e.g., ‘‘person’’), a small weight to small

Figure 5. Spatial Visualization of the Group Semantic Space

(A) All 1,705 categories, organized by their coefficients on the second and third

PCs. Links indicate ‘‘is a’’ relationships (e.g., an athlete is a person) from the

WordNet graph; some relationships used in the model have been omitted for

clarity. Eachmarker represents a single noun (circle) or verb (square). The color

of each marker is determined by an RGB colormap based on the category

coefficients in PCs 2–4 (see Figure 4B for details). The position of each marker

is also determined by the PC coefficients: position on the x axis is determined

by the coefficient on the second PC and position on the y axis is determined

by the coefficient on the third PC. This ensures that categories that are

represented similarly in the brain appear near each other. The area of each

marker indicates the magnitude of the PC coefficients for that category;

more important or strongly represented categories have larger coefficients.

The categories ‘‘man,’’ ‘‘talk,’’ ‘‘text,’’ ‘‘underwater,’’ and ‘‘car’’ have the largest

coefficients on these PCs.

(B) All 1,705 categories, organized by their coefficients on the second and

fourth PCs. Format is the same as (A). The large group of ‘‘animal’’ categories

has large PC coefficients and is mainly distinguished by the fourth PC. Human

categories appear to span a continuum. The category ‘‘person’’ is very close to

indoor categories such as ‘‘room’’ on the second and third PCs but different on

the fourth. The category ‘‘athlete’’ is close to vehicle categories on the second

and third PCs but is also close to ‘‘animal’’ on the fourth PC. These semanti-

cally related categories are represented similarly in the brain, supporting the

hypothesis of a smooth semantic space. However, these results also show

that some categories (e.g., ‘‘talk,’’ ‘‘man,’’ ‘‘text,’’ and ‘‘car’’) appear to bemore

important than others. Movie S1 shows this semantic space in 3D.
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objects (e.g., ‘‘glasses’’), and zero weight to objects that have

no size (e.g., ‘‘talking’’) or can be many sizes (e.g., ‘‘animal’’).

This object size dimension was not well captured by any of the

four group PCs. However, based on earlier results (Konkle and

Oliva, 2012), it appears that object size is represented in the

brain. Thus, it is likely that object size is captured by lower-vari-

ance group PCs that could not be significantly discerned in this

experiment.

Cortical Maps of Semantic Representation

The results of the PC analysis show that the brains of different

individuals represent object and action categories in a common

semantic space. Here we examine how this semantic space is

represented across the cortical surface. To do this, we first con-

structed a separate cortical flatmap for each subject using stan-

dard techniques (Van Essen et al., 2001). Then we used the

scheme described above (see Figure 4) to assign a color to

each voxel according to the projection of its category model

weights into the PC space (for separate PCmaps, see Figure S4).

The results are shown in Figures 7A and 7C for two subjects (cor-

responding maps for other subjects are shown in Figure S5).

(Readers who wish to explore these maps in detail, and examine

the category selectivity of each voxel, may do so by going to

http://gallantlab.org/semanticmovies.)

These maps reveal that the semantic space is represented in

broad gradients that are distributed across much of anterior

visual cortex (some of these gradients are shown schematically

in Figure S6). In inferior temporal cortex, regions of animal

(yellow) and human representation (green and blue-green) run

along the inferior temporal sulcus (ITS). Both the fusiform face

area and occipital face area lie within the region of human repre-

sentation, but the surrounding region of animal representation

was previously unknown. In a gradient that runs from the ITS

toward the middle temporal sulcus, human representation gives

way to animal representation, which then gives way to represen-

tation of human action, athletes, and outdoor spaces (red and

red-green). The dorsal part of the gradient contains the extrastri-

ate body area and area MT+/V5 and also responds strongly to

motion (positive on the first PC, see Figures 7B and 7D).

In medial occipitotemporal cortex, a region of vehicle (pink)

and landscape (purple) representation sits astride the collateral

sulcus. This region, which contains the PPA, lies at one end of

a long gradient that runs across medial parietal cortex. Toward

RSC and along the PrCu, the representational gradient shifts

toward buildings (blue-indigo) and landscapes (purple). This

gradient continues forward along the superior bank of the intra-

parietal sulcus as far as the posterior end of the cingulate sulcus

while shifting representation toward geography (purple-red) and

human action (red). This long gradient encompasses both the

dorsal and ventral visual pathways (Ungerleider and Mishkin,

1982) in one unbroken band of cortex that represents a con-

tinuum of semantic categories related to vehicles, buildings,

landscapes, geography, and human actions.

This map also reveals that visual semantic categories are well

represented outside of occipital cortex. In parietal cortex, an

anterior-posterior gradient from animal (yellow) to landscape

(purple) representation is located in the posterior bank of the

postcentral sulcus (PoCeS). This is consistent with earlier reports

that movies of hand movements evoke responses in the PoCeS

(Buccino et al., 2001; Hasson et al., 2004) and may reflect

learned associations between visual and somatosensory stimuli.

In frontal cortex, a region of human action and athlete repre-

sentation (red) is located at the posterior end of the superior

frontal sulcus (SFS). This region, which includes the frontal eye

fields (FEFs), lies at one end of a gradient that shifts toward land-

scape (purple) representation while extending along the SFS.

Figure 6. Comparison between the Group

Semantic Space and Nine Hypothesized

Semantic Dimensions

For each hypothesized semantic dimension, we

assigned a value to each of the 1,705 categories

(see Experimental Procedures for details) and

we computed the fraction of variance that each

dimension explains in each PC. Each panel

shows the variance explained by all hypothesized

dimensions in one of the four group PCs.

Error bars indicate bootstrap SE. The first PC is

best explained by a dimension that contrasts

mobile categories (people, nonhuman animals,

and vehicles) with nonmobile categories and

an ‘‘animacy’’ dimension (Connolly et al., 2012)

that assigns high weight to humans, decreasing

weights to other mammals, birds, reptiles, fish,

and invertebrates, and zero weight to other

categories. The second PC is best explained by

a dimension that contrasts social categories

(people and communication verbs) with all other

categories. The third PC is best explained by

a dimension that contrasts categories associated

with civilization (people, man-made objects, and

vehicles) with categories associated with nature

(nonhuman animals). The fourth PC is best explained by a dimension that contrasts biological categories (people, animals, plants, body parts, and plant parts)

with nonbiological categories and a dimension that contrasts animals (people and nonhuman animals) with nonanimals.
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Another region of human action, athlete, and animal representa-

tion (red-yellow) is located at the posterior inferior frontal sulcus

(IFS) and contains the frontal operculum (FO). Both the FO and

FEF have been associated with visual attention (Büchel et al.,

1998), so we suspect that human action categories might be

correlated with salient visual movements that attract covert

visual attention in our subjects.

In inferior frontal cortex, a region of indoor structure (blue),

human (green), communication verb (also blue-green), and text

(cyan) representation runs along the IFS anterior to the FO.

This region coincides with the inferior frontal sulcus face patch

(Avidan et al., 2005; Tsao et al., 2008) and has also been impli-

cated in processing of visual speech (Calvert and Campbell,

2003) and text (Poldrack et al., 1999). Our results suggest that

visual speech, text, and faces are represented in a contiguous

region of cortex.

Smoothness of Cortical Semantic Maps

We have shown that the brain represents hundreds of categories

within a continuous four-dimensional semantic space that is

shared among different subjects. Furthermore, the results shown

in Figure 7 suggest that this space is mapped smoothly onto the

cortical sheet. However, the results presented thus far are not

sufficient to determine whether the apparent smoothness of

the cortical map reflects the specific properties of the group

semantic space, or rather whether a smooth map might result

from any arbitrary four-dimensional projection of our voxel

weights onto the cortical sheet. To address this issue, we tested

Figure 7. Semantic Space Represented across the Cortical Surface

(A) The category model weights for each cortical voxel in subject A.V. are projected onto PCs 2–4 of the group semantic space and then assigned a color ac-

cording to the scheme described in Figure 4B. These colors are projected onto a cortical flatmap constructed for subject A.V. Each location on the flatmap shown

here represents a single voxel in the brain of subject A.V. Locations with similar colors have similar semantic selectivity. This map reveals that the semantic space

is represented in broad gradients distributed across much of anterior visual cortex. Semantic selectivity is also apparent in medial and lateral parietal cortex,

auditory cortex, and lateral prefrontal cortex. Brain areas identified using conventional functional localizers are outlined in white and labeled (see Table S1 for

abbreviations). Boundaries that have been inferred from anatomy or that are otherwise uncertain are denoted by dashed white lines. Major sulci are denoted by

dark blue lines and labeled (see Table S2 for abbreviations). Some anatomical regions are labeled in light blue (abbreviations: PrCu, precuneus; TPJ, tempor-

oparietal junction). Cuts made to the cortical surface during the flattening procedure are indicated by dashed red lines and a red border. The apex of each cut is

indicated by a star. Blue borders show the edge of the corpus callosum and subcortical structures. Regions of fMRI signal dropout due to field inhomogeneity are

shaded with black hatched lines.

(B) Projection of voxel model weights onto the first PC for subject A.V. Voxels with positive projections on the first PC appear red, while those with negative

projections appear blue and those orthogonal to the first PC appear gray.

(C) Projection of voxel weights onto PCs 2–4 of the group semantic space for subject T.C.

(D) Projection of voxel model weights onto the first PC for subject T.C. See Figure S5 for maps of semantic representation in other subjects.

Note: explore these data sets yourself at http://gallantlab.org/semanticmovies.
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whether cortical maps under the four-PC group semantic space

are smoother than expected by chance.

In order to quantify the smoothness of a cortical map, we first

projected the category model weights for every voxel into the

four-dimensional semantic space. Then we computed the corre-

lation between the projections for each pair of voxels. Finally, we

aggregated and averaged these pairwise correlations based

on the distance between each pair of voxels along the cortical

sheet. To estimate the null distribution of smoothness values

and to establish statistical significance, we repeated this proce-

dure using 1,000 random four-dimensional semantic spaces

(see Experimental Procedures for details).

Figure 8 shows the average correlation between voxel projec-

tions into the semantic space as a function of the distance

between voxels along the cortical sheet. In all five subjects, the

group semantic space projections have significantly (p < 0.001)

higher average correlation than the random projections, for

both adjacent voxels (distance 1) and voxels separated by one

intermediate voxel (distance 2). These results suggest that

smoothness of the cortical map is specific to the group semantic

space estimated here. Because the group semantic space was

constructed without using any spatial information, this finding

independently confirms the significance of the group semantic

space.

Importance of Category Representation across Cortex

The cortical maps shown in Figure 7 demonstrate that much of

the cortex is semantically selective. However, this does not

necessarily imply that semantic selectivity is the primary function

of any specific cortical site. To assess the importance of

semantic selectivity across the cortical surface, we evaluated

predictions of the category model, using a separate data set

reserved for this purpose (Kay et al., 2008; Naselaris et al.,

2009; Nishimoto et al., 2011). Prediction performance was quan-

tified as the correlation between predicted and observed BOLD

responses, corrected to account for noise in the validation data

(see Experimental Procedures and Hsu et al., 2004).

Figure 9 shows prediction performance projected onto cortical

flat maps for two subjects (corresponding maps for other

subjects are shown in Figure S7). The category model accurately

predicts BOLD responses in occipitotemporal cortex, medial

parietal cortex, and lateral prefrontal cortex. On average, 22%

of cortical voxels are predicted significantly (p < 0.01 uncor-

rected; 19% in subject S.N., 20% in A.H., 26% in A.V., 26% in

T.C., and 21% in J.G.). The category model explains at least

20% of the explainable variance (correlation > 0.44) in an

average of 8% of cortical voxels (5% in subject S.N., 7% in

A.H., 10% in A.V., 12% in T.C., and 7% in J.G.). These results

show that category representation is broadly distributed across

the cortex. This result is inconsistent with the results of previous

fMRI studies that reported only a few category-selective regions

(Schwarzlose et al., 2005; Spiridon et al., 2006). (Note, however,

that the category selectivity of individual brain areas reported

in these previous studies is consistent with our results.) We

suspect that previous studies have underestimated the extent

of category representation in the cortex because they used static

images and tested only a handful of categories.

Figure 9 also shows that some regions of cortex that appeared

semantically selective in Figure 7 are predicted poorly. This

suggests that the semantic selectivity of some brain regions

is inconsistent or nonstationary. These inconsistent regions

include the middle precuneus, temporoparietal junction, and

medial prefrontal cortex. All of these regions are thought to

be components of the default mode network (Raichle et al.,

Figure 8. Smoothness of Cortical Maps under the Group Semantic Space

To quantify smoothness of cortical representation under a semantic space, we first projected voxel category model weights into the semantic space. Second, we

computed the mean correlation between voxel semantic projections as a function of the distance between voxels along the cortical sheet. To determine whether

cortical semantic maps under the group semantic space are significantly smoother than chance, we computed smoothness using the same analysis for 1,000

random four-dimensional spaces. Mean correlations for the group semantic space are plotted in blue, and mean correlations for the 1,000 random spaces are

plotted in gray. Gray error bars show 99% confidence intervals for the random space results. Group semantic space correlations that are significantly different

from the random space results (p < 0.001) are shown as hollow symbols. For adjacent voxels (distance 1) and voxels separated by one intermediate voxel

(distance 2), correlations of group semantic space projections are significantly greater than chance in all subjects. This shows that cortical semantic maps under

the group semantic space are much smoother than would be expected by chance.
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2001) and are known to be strongly modulated by attention

(Downar et al., 2002). Because we did not control or manipulate

attention in this experiment, the inconsistent semantic selectivity

of these regions may reflect uncontrolled attentional effects.

Future studies that control attention explicitly could improve

category model predictions in these regions.

DISCUSSION

We used brain activity evoked by natural movies to study how

1,705 object and action categories are represented in the human

brain. The results show that the brain represents categories in

a continuous semantic space that reflects category similarity.

These results are consistent with the hypothesis that the brain

efficiently represents the diversity of categories in a compact

space, and they contradict the common hypothesis that each

category is represented in a distinct brain area. Assuming that

semantically related categories share visual or conceptual

features, this organization probably minimizes the number of

neurons or neural wiring required to represent these features.

Across the cortex, semantic representation is organized along

smooth gradients that seem to be distributed systematically.

Functional areas defined using classical contrast methods are

merely peaks or nodal points within these broad semantic gradi-

ents. Furthermore, cortical maps based on the group semantic

space are significantly smoother than expected by chance.

These results suggest that semantic representation is analogous

to retinotopic representation, in which many smooth gradients of

visual eccentricity and angle selectivity tile the cortex (Engel

et al., 1997; Hansen et al., 2007). Unlike retinotopy, however,

Figure 9. Model Prediction Performance across the Cortical Surface

To determine how much of the response variance of each voxel is explained by the category model, we assessed prediction performance using separate

validation data reserved for this purpose.

(A) Each location on the flat map represents a single voxel in the brain of subject A.V. Colors reflect prediction performance on the validation data. Well-predicted

voxels appear yellow or white, and poorly predicted voxels appear gray. The best predictions are found in occipitotemporal cortex, the posterior superior

temporal sulcus, medial parietal cortex, and inferior frontal cortex.

(B) Model performance for subject T.C. See Figure S7 for model prediction performance in other subjects. See Table S3 for model prediction performance within

known functional areas.
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the relevant dimensions of the space underlying semantic

representation are not known a priori and so must be derived

empirically.

Previous studies have shown that natural movies evoke wide-

spread, robust BOLD activity across much of the cortex (Bartels

and Zeki, 2004; Hasson et al., 2004, 2008; Haxby et al., 2011;

Nishimoto et al., 2011). However, those studies did not attempt

to systematically map semantic representation or discover the

underlying semantic space. Our results help explain why natural

movies evoke widely consistent activity across different individ-

uals: object and action categories are represented in terms of

a common semantic space that maps consistently onto cortical

anatomy.

One potential criticism of this study is that the WordNet

features used to construct the category model might have

biased the recovered semantic space. For example, the cate-

gory ‘‘surgeon’’ only appears four times in these stimuli, but

because it is a descendent of ‘‘person’’ in WordNet, surgeon

appears near person in the semantic space. It is possible (how-

ever unlikely) that surgeons are represented very differently from

other people but that we are unable to recover that information

from these data. On the other hand, categories that appeared

frequently in these stimuli are largely immune to this bias. For

example, among the descendents of ‘‘person,’’ there is a large

difference between the representations of ‘‘athlete’’ (which

appears 282 times in these stimuli) and ‘‘man’’ (which appears

1,482 times). Thus, it appears that bias due to WordNet only

affects rare categories. We do not believe that these consider-

ations have a significant effect on the results of this study.

Another potential criticism of the regression-based approach

used in this study is that some results could be biased by stim-

ulus correlations. For example, we might conclude that a voxel

responds to ‘‘talking’’ when in fact it responds to the presence

of a ‘‘mouth.’’ In theory, such correlations are modeled and

removed by the regression procedure as long as sufficient

data are collected, but our data are limited and so some residual

correlations may remain. However, we believe that the alter-

native—bias due to preselecting a small number of stimulus

categories—is a more pernicious source of error and misinter-

pretation in conventional fMRI experiments. Errors due to stim-

ulus correlation can be seen, measured, and tested. Errors due

to stimulus preselection are implicit and largely invisible.

The group semantic space found here captures large

semantic distinctions such as mobile versus stationary cate-

gories but misses finer distinctions such as ‘‘old faces’’ versus

‘‘young faces’’ (Op de Beeck et al., 2010) and ‘‘small objects’’

versus ‘‘large objects’’ (Konkle and Oliva, 2012). These fine

distinctions would probably be captured by lower-variance

dimensions of the shared semantic space that could not be

recovered in this experiment. The dimensionality and resolu-

tion of the recovered semantic space are limited by the quality

of BOLD fMRI and by the size and semantic breadth of the

stimulus set. Future studies that use more sensitive measures

of brain activity or broader stimulus sets will probably reveal

additional dimensions of the common semantic space. Further

studies using more subjects will also be necessary in order

to understand differences in semantic representation between

individuals.

Some previous studies have reported that animal and non-

animal categories are represented distinctly in the human brain

(Downing et al., 2006; Kriegeskorte et al., 2008; Naselaris

et al., 2009). Another study proposed an alternative: that animal

categories are represented using an animacy continuum (Con-

nolly et al., 2012), in which animals that are more similar to

humans have higher animacy. Our results show that animacy is

well represented on the first, and most important, PC in the

group semantic space. The binary distinction between animals

and nonanimals is also well represented but only on the fourth

PC.Moreover, the fourth PC is better explained by the distinction

between biological categories (including plants) and nonbiolog-

ical categories. These results suggest that the animacy con-

tinuum is more important for category representation in the brain

than is the binary distinction between animal and nonanimal

categories.

A final important question about the group semantic space is

whether it reflects visual or conceptual features of the cate-

gories. For example, people and nonhuman animals might be

represented similarly because they share visual features such

as hair, or because they share conceptual features such as

agency or self-locomotion. The answer to this question probably

depends upon which voxels are used to construct the semantic

space. Voxels from occipital and inferior temporal cortex have

been shown to have similar semantic representation in humans

and monkeys (Kriegeskorte et al., 2008). Therefore, these voxels

probably represent visual features of the categories and not

conceptual features. In contrast, voxels from medial parietal

cortex and frontal cortex probably represent conceptual features

of the categories. Because the group semantic space reported

here was constructed using voxels from across the entire brain,

it probably reflects a mixture of visual and conceptual features.

Future studies using both visual and nonvisual stimuli will

be required to disentangle the contributions of visual versus

conceptual features to semantic representation. Furthermore,

a model that represents stimuli in terms of visual and conceptual

featuresmight producemore accurate and parsimonious predic-

tions than the category model used here.

EXPERIMENTAL PROCEDURES

MRI Data Collection

MRI data were collected on a 3T Siemens TIM Trio scanner at the UC Berkeley

Brain Imaging Center using a 32-channel Siemens volume coil. Functional

scans were collected using a gradient echo-EPI sequence with repetition

time (TR) = 2.0045 s, echo time (TE) = 31 ms, flip angle = 70�, voxel size =

2.24 3 2.24 3 4.1 mm, matrix size = 100 3 100, and field of view = 224 3

224 mm. We prescribed 32 axial slices to cover the entire cortex. A custom-

modified bipolar water excitation radio frequency (RF) pulse was used to avoid

signal from fat.

Anatomical data for subjects A.H., T.C., and J.G. were collected using a T1-

weighted MP-RAGE sequence on the same 3T scanner. Anatomical data for

subjects S.N. and A.V. were collected on a 1.5T Philips Eclipse scanner as

described in an earlier publication (Nishimoto et al., 2011).

Subjects

Functional data were collected from five male human subjects, S.N. (author

S.N., age 32), A.H. (author A.G.H., age 25), A.V. (author A.T.V., age 25), T.C.

(age 29), and J.G. (age 25). All subjects were healthy and had normal or cor-

rected-to-normal vision. The experimental protocol was approved by the
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Committee for the Protection of Human Subjects at University of California,

Berkeley.

Natural Movie Stimuli

Model estimation data were collected in 12 separate 10 min scans. Validation

data were collected in nine separate 10min scans, each consisting of ten 1min

validation blocks. Each 1 min validation block was presented ten times within

the 90 min of validation data. The stimuli and experimental design were iden-

tical to those used in Nishimoto et al. (2011), except that here the movies were

shown on a projection screen at 24 3 24 degrees of visual angle.

fMRI Data Preprocessing

Each functional run was motion corrected using the FMRIB Linear Image

Registration Tool (FLIRT) from FSL 4.2 (Jenkinson and Smith, 2001). All

volumes in the run were then averaged to obtain a high-quality template

volume. FLIRT was also used to automatically align the template volume for

each run to the overall template, which was chosen to be the template for

the first functional movie run for each subject. These automatic alignments

were manually checked and adjusted for accuracy. The cross-run transforma-

tion matrix was then concatenated to the motion-correction transformation

matrices obtained using MCFLIRT, and the concatenated transformation

was used to resample the original data directly into the overall template space.

Low-frequency voxel response drift was identified using a median filter with

a 120 s window and this was subtracted from the signal. The mean response

for each voxel was then subtracted and the remaining response was scaled to

have unit variance.

Flatmap Construction

Cortical surface meshes were generated from the T1-weighted anatomical

scans using Caret5 software (Van Essen et al., 2001). Five relaxation cuts

were made into the surface of each hemisphere and the surface crossing

the corpus callosum was removed. The calcarine sulcus cut was made at

the horizontal meridian in V1 using retinotopic mapping data as a guide.

Surfaces were then flattened using Caret5.

Functional data were aligned to the anatomical data for surface projection

using custom software written in MATLAB (MathWorks).

Stimulus Labeling and Preprocessing

One observer manually tagged each second of the movies with WordNet

labels describing the salient objects and actions in the scene. The number of

labels per second varied between 1 and 14, with an average of 4.2. Categories

were tagged if they appeared in at least half of the 1 s clip. When possible,

specific labels (e.g., ‘‘priest’’) were used instead of generic labels (e.g.,

‘‘person’’). Label assignments were spot checked for accuracy by two addi-

tional observers. For example labeled clips, see Figure S1.

The labels were then used to build a category indicator matrix, in which each

second of movie occupies a row and each category occupies a column. A

value of 1 was assigned to each entry in which that category appeared in

that second of movie and all other entries were set to zero. Next, the WordNet

hierarchy (Miller, 1995) was used to add all the superordinate categories

entailed by each labeled category. For example, if a clip was labeled with

‘‘wolf,’’ we would automatically add the categories ‘‘canine,’’ ‘‘carnivore,’’

‘‘placental mammal,’’ ‘‘mammal,’’ ‘‘vertebrate,’’ ‘‘chordate,’’ ‘‘organism,’’ and

‘‘whole.’’ According to this scheme the predictedBOLD response to a category

is not just the weight on that category but the sum of weights for all entailed

categories.

The addition of superordinate categories should improve model predictions

by allowing poorly sampled categories to share information with their WordNet

neighbors. To test this hypothesis, we compared prediction performance of

the model with superordinate categories to a model that used only the labeled

categories. The number of significantly predicted voxels is 10%–20% higher

with the superordinate category model than with the labeled category model.

To ensure that the PCA results presented here are not an artifact of the added

superordinate categories, we performed the same analysis using the labeled

categories model. The results obtained using the labeled categories model

were qualitatively similar to those obtained using the full model (data not

shown).

The regression procedure also included one additional feature that

described the total motion energy during each second of the movie. This

regressor was added in order to explain away spurious correlation between

responses in early visual cortex and some categories. Total motion energy

was computed as the mean output of a set of 2,139 motion energy filters

(Nishimoto et al., 2011), in which each filter consisted of a quadrature pair of

space-time Gabor filters (Adelson and Bergen, 1985; Watson and Ahumada,

1985). The motion energy filters tile the image space with a variety of preferred

spacial frequencies, orientations, and temporal frequencies. The total motion

energy regressor explained much of the response variance in early visual

cortex (mainly V1 and V2). This had the desired effect of explaining away corre-

lations between responses in early visual cortex and categories that feature

full-field motion (e.g., ‘‘fire’’ and ‘‘snow’’). The total motion energy regressor

was used to fit the category model but was not included in the model

predictions.

Voxelwise Model Fitting and Testing

The category model was fit to each voxel individually. A set of linear temporal

filters was used to model the slow hemodynamic response inherent in the

BOLD signal (Nishimoto et al., 2011). To capture the hemodynamic delay,

we used concatenated stimulus vectors that had been delayed by two, three,

and four samples (4, 6, and 8 s). For example, one stimulus vector indicates the

presence of ‘‘wolf’’ 4 s earlier, another the presence of ‘‘wolf’’ 6 s earlier, and

a third the presence of ‘‘wolf’’ 8 s earlier. Taking the dot product of this delayed

stimulus with a set of linear weights is functionally equivalent to convolution of

the original stimulus vector with a linear temporal kernel that has nonzero

entries for 4, 6, and 8 s delays.

For details about the regularized regression procedure, model testing, and

correction for noise in the validation set, please see the Supplemental Exper-

imental Procedures.

All model fitting and analysis was performed using custom software written

in Python, which made heavy use of the NumPy (Oliphant, 2006) and SciPy

(Jones et al., 2001) libraries.

Estimating Predicted Category Response

In the semantic category model used here, each category entails the presence

of its superordinate categories in the WordNet hierarchy. For example, ‘‘wolf’’

entails the presence of ‘‘canine,’’ ‘‘carnivore,’’ etc. Because these categories

must be present in the stimulus if ‘‘wolf’’ is present, the model weight for

‘‘wolf’’ alone does not accurately reflect the model’s predicted response to a

stimulus containing only a ‘‘wolf.’’ Instead, the predicted response to ‘‘wolf’’

is the sum of the weights for ‘‘wolf,’’ ‘‘canine,’’ ‘‘carnivore,’’ etc. Thus, to deter-

mine the predicted response of a voxel to a given category, we added together

the weights for that category and all categories that it entails. This procedure is

equivalent to simulating the response of a voxel to a stimulus labeled only with

‘‘wolf.’’

We used this procedure to estimate the predicted category responses

shown in Figure 2, to assign colors and positions to the category nodes shown

in Figures 4 and 5, and to correct PC coefficients before comparing them to

hypothetical semantic dimensions as shown in Figure 6.

Principal Components Analysis

For each subject, we used PCA to recover a low-dimensional semantic space

from category model weights. We first selected all voxels that the model pre-

dicted significantly, using a liberal significance threshold (p < 0.05 uncorrected

for multiple comparisons). This yielded 8,269 voxels in subject S.N., 8,626

voxels in A.H., 11,697 voxels in A.V., 11,187 voxels in T.C., and 9,906 voxels

in J.G. We then applied PCA to the category model weights of the selected

voxels, yielding 1,705 PCs for each subject. (In additional tests, we found

that varying the voxel selection threshold does not strongly affect the PCA

results.) Partial scree plots showing the amount of variance accounted for

by each PC are shown in Figure 3. The first four PCs account for 24.1% of vari-

ance in subject S.N., 25.9% of variance in A.H., 28.0% of variance in A.V.,

25.8% of variance in T.C., and 25.6% of variance in J.G.

Second, we tested whether the recovered PCs were different from what we

would expect by chance. For details of this procedure, please see the Supple-

mental Experimental Procedures.
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In this paper, we present semantic analyses using PCA, but PCA is only one

of many dimensionality reductionmethods. Sparse methods such as indepen-

dent components analysis and nonnegative matrix factorization can also be

used to recover the underlying semantic space. We found that these methods

produced qualitatively similar results to PCA on the data presented here. In this

paper, we present only PCA results because PCA is commonly used, easy to

understand, and the results are highly interpretable.

Stimulus Identification Using Category Model and Models Based on

Group PCs

To quantify the relative amount of information that can be represented by the

full category model and the models based on group PCs, we used the valida-

tion data to perform an identification analysis (Kay et al., 2008; Nishimoto et al.,

2011). For the full category model, we calculated log likelihoods of the ob-

served responses given predicted responses to the validation stimuli and

the fitted category model (Nishimoto et al., 2011). Here we declare correct

identification if the highest likelihood for aggregated 18 s (9 TR) chunks of

responses can be associated with the correct timings for thematched stimulus

chunks within ±1 volume (TR). In order to minimize the potential confound due

to nonsemantic stimulus features, we subtracted the prediction of the total

motion energy regressor from responses before the analysis.

To perform the identification analysis for models based on the group

PCs, we repeated the same procedures as above but using group PC

models. We obtained these models by voxelwise regression using the cate-

gory stimuli projected into the group PC space (see voxelwise model fitting

and principal component analysis in Experimental Procedures). In order to

assess variability in the performance measurements, we performed the iden-

tification analysis ten times, based on group PCs obtained using bootstrap

voxel samples.

To reduce noise, the identification analyses used only the 2,000 most

predictable voxels. Prediction performance was assessed using 10% of the

training data that we reserved from the regression for this purpose. Voxel

selection was performed separately for each model and subject.

Comparison between Group Semantic Space and Hypothesized

Semantic Dimensions

To compare the dimensions of the group semantic space to hypothesized

semantic dimensions, we first defined each hypothesized dimension as a

vector with a value for each of the 1,705 categories. We then computed the

variance that each hypothesized dimension explains in each group PC as

the squared correlation between the PC vector and hypothesized dimension

vector. To find confidence intervals on the variance explained in each PC,

we bootstrapped the group PCA by sampling with replacement 100 times

from the pooled voxel population.

We defined nine semantic dimensions based on previous publications and

our own hypotheses. These dimensions included mobile versus immobile, ani-

macy, humans versus nonhumans, social versus nonsocial, civilization versus

nature, animal versus nonanimal, biological versus nonbiological, place versus

nonplace, and object size. For the mobile versus immobile dimension, we as-

signed positive weights to mobile categories such as animals, people, and

vehicles, and zero weight to all other categories. For the animacy dimension

based on Connolly et al. (2012), we assigned high weights to people and inter-

mediate and low weights to other animals based on their phylogenetic

distance from humans: more distant animals were assigned lower weights.

For the human versus nonhuman dimension, we assigned positive weights

to people and zero weights to all other categories. For the social versus non-

social dimension, we assigned positive weights to people and communication

verbs and zero weights to all other categories. For the civilization versus nature

dimension, we assigned positive weights to people, man-made objects (e.g.,

‘‘buildings,’’ ‘‘vehicles,’’ and ‘‘tools’’), and communication verbs and negative

weights to nonhuman animals. For the animal versus nonanimal dimension,

we assigned positive weights to nonhuman animals, people, and body parts

and zero weight to all other categories. For the biological versus nonbiological

dimension, we assigned positive weights to all organisms (e.g., ‘‘people,’’

‘‘nonhuman animals,’’ and ‘‘plants’’), plant organs (e.g., ‘‘flower’’ and ‘‘leaf’’),

body parts, and body coverings (e.g., ‘‘hair’’). For the place versus nonplace

dimension, we assigned positive weights to outdoor categories (e.g., ‘‘geolog-

ical formations,’’ ‘‘geographical locations,’’ ‘‘roads,’’ ‘‘bridges,’’ and ‘‘build-

ings’’) and zeroweight to all other categories. For the real-world size dimension

based on Konkle and Oliva (2012), we assigned a high weight to large objects

(e.g., ‘‘boat’’), medium weight to human-scale objects (e.g., ‘‘person’’), a small

weight to small objects (e.g., ‘‘glasses’’), and zero weight to objects that have

no size (e.g., ‘‘talking’’) and those that can be many sizes (e.g., ‘‘animal’’).

Smoothness of Cortical Maps under Group Semantic Space

Projecting voxel category model weights onto the group semantic space pro-

duces semantic maps that appear spatially smooth (see Figure 7). However,

these maps alone are insufficient to determine whether the apparent smooth-

ness of the cortical map is a specific property of the four-PC group semantic

space. If the categorical model weights are themselves smoothly mapped

onto the cortical sheet, then any four-dimensional projection of these weights

might appear equally as smooth as the projection onto the group semantic

space. To address this issue, we tested whether cortical maps under the

four-PC group semantic space are smoother than expected by chance.

First, we constructed a voxel adjacency matrix based on the fiducial cortical

surfaces. The cortical surface for each hemisphere in each subject was repre-

sented as a triangular mesh with roughly 60,000 vertices and 120,000 edges.

Two voxels were considered adjacent if there was an edge that connects

a vertex inside one voxel to a vertex inside the other. Second, we computed

the distance between each pair of voxels in the cortex as the length of the

shortest path between the voxels in the adjacency graph. This distance metric

does not directly translate to physical distance, because the voxels in our scan

are not isotropic. However, this affects all models that we test and thus will not

bias the results of this analysis.

Third, we projected the voxel category weights onto the four-dimensional

group semantic space, which reduced each voxel to a length 4 vector. We

then computed the correlation between the projected weights for each pair

of voxels in the cortex. Fourth, for each distance up to ten voxels, we

computed the mean correlation between all pairs of voxels separated by

that distance. This procedure produces a spatial autocorrelation function for

each subject. These results are shown as blue lines in Figure 8.

To determine whether cortical map smoothness is specific to the group

semantic space, we repeated this analysis 1,000 times using random semantic

spaces of the same dimension as the group semantic space. Random ortho-

normal four-dimensional projections from the 1,705-dimensional category

space were constructed by applying singular value decomposition to

randomly generated 4 3 1,705 matrices. One can think of these spaces as

uniform random rotations of the group semantic space inside the 1,705-

dimensional category space.

We considered the observed mean pairwise correlation under the group

semantic space to be significant if it exceeded all of the 1,000 random

samples, corresponding to a p value of less than 0.001.

SUPPLEMENTAL INFORMATION

Supplemental Information includes seven figures, three tables, Supplemental

Experimental Procedures, and one movie and can be found with this article

online at http://dx.doi.org/10.1016/j.neuron.2012.10.014.

ACKNOWLEDGMENTS

The work was supported by grants from the National Eye Institute (EY019684)

and from the Center for Science of Information (CSoI), an NSF Science and

Technology Center, under grant agreement CCF-0939370. A.G.H. was also

supported by the William Orr Dingwall Neurolinguistics Fellowship. We thank
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Figure S1 (related to Figure 1). Example stimuli with category labels. Representative frames from 
six movie clips that were used as stimuli in this experiment, along with the labels that were assigned to 
those clips. The WordNet lexicon (Miller, 1995) was used to label salient objects and actions in each 
second of the movies. Each WordNet label (e.g. bison.n.01) has a name (bison), a part-of-speech (n for 
noun or v for verb), and a number (01, indicating the first meaning of bison).  







 
Figure S4 (related to Figure 7). Cortical flat maps with individual PC projections. Similar to 
Figure 7 in the main text, this figure shows the second, third, and fourth group semantic PCs projected 
on the cortical flat map constructed specially for subject AV. (A) Each location on the map represents a 
single voxel in subject AV. The color reflects the projection of the voxel category model weights on the 
second PC (shown in Figure S3B). Voxels that are positively correlated with the second PC appear red, 
while negatively correlated voxels appear blue. Voxels orthogonal to the second PC appear gray. (B) 
Same, for third PC. (C) Same, for fourth PC. 





 
Figure S6 (related to Figure 7). Schematic of semantic gradients. This figure is similar to Figure 7 
in the main text, but shows schematically the semantic gradients that appear consistently across 
subjects. These gradients are described in detail in the main text. (A) The cortical flat map constructed 
for subject AV. Semantic gradients are indicated by blue and white arrows and numbered. Gradient 1 
starts in the posterior inferior temporal sulcus (ITS), which is selective for humans (green and blue-
green), continues through a region of animal selectivity (yellow), and ends at the posterior middle 
temporal sulcus (MTS), which is selective for human actions, athletes, and outdoor spaces (red and 
green-red). Gradient 2 starts in a region of the collateral sulcus that is selective for vehicles and 
landscapes (pink and purple), continues superiorly along the medial wall to retrosplenial cortex (RSC), 
which is selective for buildings and landscapes (blue-indigo and purple), then continues anteriorly 
along the superior bank of the intraparietal sulcus (IPS), which is selective for geography and human 
actions (red-purple and red). Note that this gradient crosses one of the relaxation cuts made to the 
cortical surface, and so appears discontinuous. Gradient 3 starts in the inferior postcentral sulcus 
(PoCeS), which is animal selective (yellow and yellow-green), and ends in the anterior part of the 
temporoparietal junction (TPJ), which is landscape selective (purple). Gradient 4 starts in the 
posterior superior frontal sulcus (SFS), which is selective for human actions (red), and ends in the 
anterior SFS, which is selective for landscapes (purple). (B) The cortical flat map constructed for 
subject TC with semantic gradients. 





Table S1 (related to Figure 7). Abbreviations, localizers, and references for known functional 
areas 
 
Name Anatomical Location Localizer References 

FFA (fusiform face area) Posterior fusiform gyrus Faces ± objects contrast Kanwisher et al., 1997; 
McCarthy et al., 1997 

OFA (occipital face area) Just anterior to V4v/VO Faces ± objects contrast Halgren et al., 1999; 
Kanwisher et al., 1997 

IFSFP (inferior frontal sulcus 
face patch) 

IFS anterior to precentral 
sulcus 

Faces ± objects contrast Avidan et al., 2005; Tsao et 
al., 2008 

ATFP (anterior temporal face 
patch) 

Temporal pole Faces ± objects contrast Rajimehr et al., 2009 

EBA (extrastriate body area) Anterior to MT+ on the 
medial temporal gyrus 

Human bodies ± objects 
contrast 

Downing et al., 2001 

FBA (fusiform body area) Fusiform sulcus/gyrus 
anterior to FFA 

Human bodies ± objects 
contrast 

Peelen & Downing, 2005; 
Schwarzlose et al., 2005 

PPA (parahippocampal place 
area) 

Collateral fissure Scenes ± objects contrast Epstein & Kanwisher, 1998 

TOS (transverse occipital 
sulcus) 

Just inferior to/overlapping 
with V7 

Scenes ± objects contrast Hasson et al., 2003; K. 
Nakamura et al., 2000 

RSC (retrosplenial cortex) Medial wall just superior to 
PPA 

Scenes ± objects contrast Aguirre, Zarahn, & 
'¶HVSRVLWR������ 

FEF (frontal eye fields) Precentral sulcus and 
superior frontal sulcus 

Self generated saccades ± 
fixation contrast 

Paus, 1996 

FO (frontal operculum) Inferior portion of precentral 
sulcus 

Self generated saccades ± 
fixation contrast 

Corbetta et al., 1998 

SEF (supplementary eye 
fields) 

Dorsal-medial frontal cortex Self generated saccades ± 
fixation contrast 

Grosbras et al., 1999 

Vper (visual periphery, 
including V1-V4) 

Surrounding mapped 
retinotopic visual cortex 

Self generated saccades ± 
fixation contrast 

 

MT+ (middle temporal) Posterior inferior temporal 
sulcus 

Coherent ± scrambled motion 
contrast 

Tootell et al., 1995 

pSTS (posterior superior 
temporal sulcus) 

As it sounds High auditory and visual 
repeatability 

 

A1 (primary auditory cortex) Heschl's gyri Auditory repeatability and 
anatomical location 

 

AC (auditory cortex) Superior temporal gyrus Auditory repeatability  

S1F/M1F (primary 
somatosensory and motor 
cortex, foot) 

Superior-medial central 
sulcus 

Foot motion ± rest contrast, 
S1F and M1F split at fundus 
of central sulcus 

Penfield & Boldrey, 1937 

S1H/M1H (primary 
somatosensory and motor 
cortex, hand) 

Central sulcus Hand motion ± rest contrast, 
S1H and M1H split at fundus 
of central sulcus 

Penfield & Boldrey, 1937 

S1M/M1M (primary 
somatosensory and motor 
cortex, mouth) 

Inferior central sulcus Mouth motion ± rest contrast, 
S1M and M1M split at 
fundus of central sulcus 

Penfield & Boldrey, 1937 



Name Anatomical Location Localizer References 

SMHA (supplementary 
motor hand area) 

Middle cingulate gyrus Hand motion ± rest contrast Fried et al., 1991 

SMFA (supplementary motor 
foot area) 

Middle cingulate 
gyrus/sulcus 

Foot motion ± rest contrast Fried et al., 1991 

IPS (intraparietal sulcus) Lateral parietal cortex Retinotopy  

V1-V4, V3A, V3B Occipital cortex  Retinotopy Hansen et al., 2007 

LO (lat. occipital complex) Anterior to V4 Retinotopy Hansen et al., 2007 

VO Inferior to V4v Retinotopy Brewer et al., 2005 

V7 Anterior to V3A/V3B Retinotopy Hansen et al., 2007 

 
 
 



 
Table S2 (related to Figure 7). Abbreviations for anatomical features 
 

Abbreviation Full Name 

CoS Collateral sulcus 

ITS Inferior temporal sulcus 

MTS Middle temporal sulcus 

STS Superior temporal sulcus 

IPS Intraparietal sulcus 

CiSmr Marginal ramus of the cingulate sulcus 

PoCeS Postcentral sulcus 

CeS Central sulcus 

IFS Inferior frontal sulcus 

SFS Superior frontal sulcus 

CiS Cingulate sulcus 

PrCu Precuneus 

TPJ Temporoparietal junction 

 



Table S3 (related to Figure 9). Category model performance within known functional areas 
Area Hemi. N Avg. Corr. Signif. / Total Voxels 

A1 L 
R 

4 
4 

0.088 
0.100 

14 / 152 
20 / 148 

AC 
(incl. A1) 

L 
R 

5 
5 

0.152 
0.166 

124 / 633 
139 / 572 

ATFP L 
R 

0 
1 

± 
0.298 

± 
3 / 8 

EBA L 
R 

5 
5 

0.449 
0.430 

146 / 172 
123 / 158 

FBA L 
R 

2 
1 

0.367 
0.525 

4 / 7 
8 / 10 

FEF L 
R 

5 
5 

0.164 
0.165 

65 / 216 
47 / 167 

FFA L 
R 

5 
5 

0.387 
0.441 

39 / 61 
58 / 72 

FO L 
R 

5 
5 

0.143 
0.191 

24 / 108 
24 / 74 

IFSFP L 
R 

3 
3 

0.254 
0.230 

21 / 53 
37 / 89 

IPS L 
R 

5 
5 

0.219 
0.224 

163 / 364 
147 / 316 

LO L 
R 

5 
5 

0.286 
0.311 

87 / 117 
120 / 165 

MT+ L 
R 

4 
4 

0.378 
0.429 

68 / 82 
53 / 59 

OFA L 
R 

3 
3 

0.322 
0.312 

15 / 24 
19 / 26 

PPA L 
R 

5 
5 

0.263 
0.298 

70 / 123 
46 / 68 

RSC L 
R 

5 
5 

0.239 
0.244 

32 / 75 
46 / 107 

SEF L 
R 

4 
4 

0.110 
0.110 

3 / 29 
3 / 34 

TOS L 
R 

3 
4 

0.327 
0.322 

32 / 58 
53 / 75 

V1 L 
R 

5 
5 

0.109 
0.111 

60 / 248 
75 / 279 

V2 L 
R 

5 
5 

0.115 
0.125 

92 / 294 
111 / 332 

V3 L 
R 

5 
5 

0.125 
0.147 

82 / 243 
113 / 281 

V3A L 
R 

5 
5 

0.205 
0.236 

40 / 69 
47 / 74 

V3B L 
R 

5 
5 

0.208 
0.236 

37 / 67 
50 / 77 



Area Hemi. N Avg. Corr. Signif. / Total Voxels 

V4 L 
R 

5 
5 

0.160 
0.184 

85 / 197 
101 / 211 

V7 L 
R 

5 
5 

0.292 
0.266 

79 / 110 
95 / 137 

VO L 
R 

2 
2 

0.204 
0.237 

16 / 26 
27 / 35 

Foot 
(S1/M1) 

L 
R 

5 
5 

0.102 
0.083 

30 / 220 
21 / 209 

Hand 
(S1/M1) 

L 
R 

5 
5 

0.081 
0.091 

29 / 365 
25 / 290 

Mouth 
(S1/M1) 

L 
R 

5 
5 

0.093 
0.091 

31 / 280 
22 / 229 

pSTS L 
R 

4 
4 

0.348 
0.385 

63 / 107 
95 / 137 

 
Prediction performance of the 1705-category model within known functional areas. For each area in 
each hemisphere, this table shows the number of subjects in which the area was identified (N), the 
average correlation coefficient within the area (corrected to account for noise in the validation dataset), 
the average number of voxels whose activity was predicted significantly (p<0.05 uncorrected), and the 
average total number of voxels within the area (each voxel is 20.7mm3 in volume). 
 



Supplemental Experimental Procedures 
 
Functional localizers 
Retinotopic localizer. Retinotopic mapping data were collected in four 9-minute scans. Two scans used 
clockwise and counterclockwise rotating polar wedges, and two used expanding and contracting rings. 
 
Motor localizer. Motor localizer data were collected during one 10-minute scan. The subject was cued 
to perform six different motor tasks in a random order in 20-second blocks. For the hand, mouth, foot, 
speech, and rest blocks the stimulus was simply a word at the center of the screen (e.g. "Hand"). For 
the saccade block the subject was shown a pattern of saccade targets. 
 
)RU�WKH�³+DQG´�FXH�WKH�VXEMHFW�ZDV�LQVWUXFWHG�WR�PDNH�VPDOO�ILQJHU-drumming movements with both 
KDQGV�IRU�DV�ORQJ�DV�WKH�FXH�UHPDLQHG�RQ�WKH�VFUHHQ��6LPLODUO\�IRU�WKH�³)RRW´�FXH�WKH�VXEMHFW�ZDV�

instructed to make small toe PRYHPHQWV�IRU�WKH�GXUDWLRQ�RI�WKH�FXH��)RU�WKH�³0RXWK´�FXH�WKH�VXEMHFW�
was instructed to make small mouth movements approximating the nonsense syllable balabalabala for 
the duration of the cue--WKLV�UHTXLUHV�PRYHPHQW�RI�WKH�OLSV��WRQJXH��DQG�MDZ��)RU�WKH�³6SHDN´�FXH�WKH�
subject was instructed to continuously subvocalize self-generated sentences for the duration of the cue. 
For the saccade condition the written cue was replaced with a fixed pattern of twelve saccade targets, 
and the subject was instructed to make frequent saccades between the targets. 
 
Area MT+ localizer. Area MT+ localizer data were collected in four 90-second scans consisting of 
alternating 16-second blocks of continuous and temporally scrambled natural movies. 
 
Visual category localizers. Visual category localizer data were collected in six 4.5-minute scans 
consisting of 16 blocks, each 16 seconds long. During each block, 20 images of either places, faces, 
human body parts, non-human animals, household objects, or spatially scrambled household objects 
were displayed. Each image was displayed for 300 ms followed by a 500 ms blank. Occasionally the 
same image was displayed twice in a row, in which case the subject was asked to respond with a button 
press. 
 
Auditory localizer. Auditory cortex localizer data were collected in one 10 minute scan. The subject 
listened to 10 repeats of a 1-minute auditory stimulus, which consisted of 20-second segments of 
music, speech, and natural sounds. To determine whether a voxel was responsive to auditory stimuli, 
the repeatability of the voxel response across the 10 stimulus repeats was calculated using an F-
statistic.  
 
RGB colormap construction 
Principal components analysis (PCA) produces a low-dimensional orthogonal space. While each 
dimension is not necessarily interpretable on its own, the space as a whole is highly interpretable (see 
Fig. 5). In order to visualize projections of voxel models and categories in a three-dimensional space 
we constructed a trivariate colormap. In this colormap each location in the 3-D unit cube is mapped to 
a unique color. We used this scheme to visualize both category coefficients and model projections into 
the PC space. However, we do not expect these data to map uniformly onto a cube. Instead, the 
distribution of model projections tends to be spherical. Mapping spherical data onto the RGB cube is 
inefficient, as the corners of the color space (where the strongest colors reside) are underutilized. Thus 
we devised a modified RGB colormap that could efficiently map spherical data onto unique RGB 
values. 
 
Our modified RGB map can be thought of as a 3-dimensional sphere in which each point represents a 



unique RGB value. This sphere is derived from the original RGB cube (a unit cube centered at the 
origin) by the following procedure: the coordinates of each point within the cube are first normalized 
by their L-infinity norm (the maximum value of the three coordinates) and then multiplied by their L-
2, or Euclidean norm. This procedure maps the unit cube onto a unit sphere. 
 
Voxel-wise model fitting and testing 
L2-penalized linear least square regression (also known as ridge regression) was used to find weights 
on the feature channels that best predicted responses on the model estimation data, which consisted of 
7200 seconds of stimuli and responses. The following procedure was repeated 15 times: we fit the 
model using a range of regularization coefficients on all but a randomly selected 500 seconds of model 
estimation data (for a total of 6700 seconds of training data). Using the weights found for each 
regularization coefficient we predicted the responses to the held-out 500 seconds of data and computed 
the correlation between actual and predicted responses separately for each voxel. Once this was done 
15 times, the test correlations for each voxel and regularization coefficient were averaged across the 15 
repetitions. The best regularization coefficient was then selected for each voxel. 
 
Finally, we used all 7200 seconds of training data and the selected regularization coefficient for each 
voxel to fit the model. To obtain a single weight for each category and each voxel, the weights for the 
three delays were averaged. The resulting weights were used in all subsequent analyses.  
 
To determine model performance we generated predictions for the 540 seconds (270 samples) of model 
validation data that were not used for model estimation. We then found the correlation between 
predicted and mean response for each voxel across the ten repetitions of the validation stimuli. To test 
whether a voxel was predicted significantly above chance level we used a bootstrap procedure. The 
270 time points in the validation data were resampled with replacement 10,000 times and the 
correlation between resampled predicted and resampled actual responses was computed for each 
sample. The p-value of the correlation was computed as the fraction of samples for which the 
correlation was less than zero; under the null hypothesis of no correlation this would yield p=0.5. The 
voxels shown in Figure 2 have very high correlations (0.530 and 0.659) and p-values too small to 
probe using this bootstrap method. To assign p-values to these correlations we used an exact formula to 
compute the p-value of the correlation between two Gaussian random variables. 
 
While the correlation between predicted response and actual mean response is an appropriate metric 
for assessing significance, it is biased downward due to noise in the validation data (David & Gallant, 
2005; Hsu et al., 2004; Sahani & Linden, 2003). Because the actual mean response is calculated using 
a finite number of repetitions (in this case 10) it contains residual noise in addition to signal. This noise 
level is likely to vary across voxels due to vascularization and magnetic field inhomogeneity. We 
accounted for noise in the validation data using the method developed in Hsu et al., 2004, in which the 
raw correlation is divided by the expected maximum possible model correlation (called the noise 
ceiling) for each voxel. For very noisy voxels, however, this method led to divergent correlation 
estimates. To correct this issue we limited voxel noise ceilings to be above some value k. For k=1, the 
estimated actual correlation is the observed correlation between response and prediction, and for k=0 
the estimated actual correlation is the original divergent estimate. We set k to 0.10, which is the p<0.05 
significance threshold for the correlation of two gaussian variables of length 270. 
 
 
 
 
 



Significance testing of principal components 
If there is no structured semantic space underlying the true model weights (i.e. the weights for each 
voxel are independent from the other voxels) then the PCs of the estimated model weights will be 
identical to the PCs of the stimulus matrix. This bias in the estimated weight PCs is due to the 
regularized regression procedure, which trades a small increase in bias for a large decrease in error 
(Hoerl & Kennard, 1970). Thus in order to appropriately evaluate statistical significance of the 
estimated model weight PCs we compared them to the stimulus PCs. This significance criterion 
ensures that the semantic structure that we observe in the PCs is due primarily to the fMRI data and not 
the statistics of category co-occurrence in the stimuli.  
 
We first tested whether each individual-subject model weight PC accounted for more variance than 
would be expected by chance. To find confidence intervals on the variance accounted for by each PC 
we bootstrapped the model weight PCA by sampling with replacement from the voxel population 1000 
times. Similarly, confidence intervals on the variance in model weights accounted for by each stimulus 
PC were obtained by bootstrapping the stimulus PCA 1000 times. The amount of variance accounted 
for in the model weights by each of the model weight PCs (orange lines) and stimulus PCs (gray lines) 
is shown in Figure 3, along with error bars denoting 99% confidence intervals. To test the hypothesis 
that a model weight PC accounts for more variance than the corresponding stimulus PC we counted the 
number of times in the 1000 bootstrap samples that the stimulus PC accounted for more variance than 
the model weight PC. The null hypothesis for this analysis is that the stimulus PC and the model 
weight PC account for the same amount of variance. We rejected the null hypothesis if the stimulus PC 
never accounted for more variance than the voxel weight PC across the 1000 bootstrap samples 
(corresponding to p<0.001).  
 
Because lower-variance PCs are more sensitive to noise and thus more likely to yield false positives, 
we tested the PCs sequentially and stopped testing after encountering the first non-significant PC. This 
procedure revealed that subject SN has 6 significant PCs (which account for 29.6% of variance), AH 
has 7 significant PCs (which account for 33.1% of variance), AV has 7 significant PCs (which account 
for 35.5% of variance), TC has 7 significant PCs (which account for 34.3% of variance), and JG has 8 
significant PCs (which account for 34.2% of variance). 
 
Next we tested PCs constructed using combined data from many subjects. For each subject we 
constructed a set of group PCs using combined data from the other four subjects, leaving out the 
selected subject. For example, to test subject SN we performed PCA on combined model weights from 
subjects AH, AV, TC, and JG. We then computed the amount of variance accounted for in the model 
weights for the left out subject by each of the group PCs.  
 
As with the individual subject PCs and stimulus PCs, confidence intervals on the variance explained by 
the group PCs were found using the bootstrap. We then tested whether each group PC explained more 
variance than the corresponding stimulus PC using the statistical procedure described above. We found 
that subjects SN, AH, AV, and TC were significantly explained by 4 group PCs (which accounted for 
19.1%, 17.3%, 21.6%, and 20.6% of variance, respectively), and subject JG was significantly 
explained by 3 group PCs (which accounted for 15.4% of variance). 
 
This analysis suggests that the five subjects share a common semantic space consisting of at least the 
first three group PCs, and four of the five subjects share four group PCs. We estimated the full group 
semantic space using PCA on combined data from all five subjects (49685 voxels total). The data were 
never spatially averaged across subjects, and never transformed into a standard functional brain space. 
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