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Visual search in scenes involves
selective and nonselective pathways
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How does one find objects in scenes? For decades, visual
search models have been built on experiments in which
observers search for targets, presented among distractor
items, isolated and randomly arranged on blank back-
grounds. Are these models relevant to search in continu-
ous scenes? This article argues that the mechanisms that
govern artificial, laboratory search tasks do play a role in
visual search in scenes. However, scene-based informa-
tion is used to guide search in ways that had no place in
earlier models. Search in scenes might be best explained
bya dual-path model: a ‘selective’ path in which candidate
objectsmust be individuallyselected for recognition anda
‘nonselective’ path in which information can be extracted
from global and/or statistical information.

Searching and experiencing a scene
It is an interesting aspect of visual experience that you can
look for an object that is, literally, right in front of your
eyes, yet not find it for an appreciable period of time. It is
clear that you are seeing something at the location of the
object before you find it. What is that something and how
do you go about finding that desired object? These ques-
tions have occupied visual search researchers for decades.
Whereas visual search papers have conventionally de-
scribed search as an important real-world task, the bulk
of research had observers looking for targets among some
number of distractor items, all presented in random con-
figurations on otherwise blank backgrounds. During the
past decade, there has been a surge of work using more
naturalistic scenes as stimuli and this has raised the issue
of the relationship of the search to the structure of the
scene. In this article, we briefly summarize some of the
models and solutions developed with artificial stimuli and
then describe what happens when these ideas confront
search in real-world scenes. We argue that the process of
object recognition, required for most search tasks, involves
the selection of individual candidate objects because all
objects cannot be recognized at once. At the same time, the
experience of a continuous visual field tells you that some
aspects of a scene reach awareness without being limited
by the selection bottleneck in object recognition. Work in
the past decade has revealed how this nonselective proces-
sing is put to use when you search in real scenes.

Classic guided search
One approach to search, developed from studies of simple
stimuli randomly placed on blank backgrounds, can be

called ‘classic guided search’ [1]. It has roots in Treisman’s
Feature Integration Theory [2]. As we briefly review below,
it holds that search is necessary because object recognition
processes are limited to one or, perhaps, a few objects at
one time. The selection of candidate objects for subsequent
recognition is guided by preattentively acquired informa-
tion about a limited set of attributes, such as color, orien-
tation and size.

Object recognition is capacity limited

You need to search because, although you are good at
recognizing objects, you cannot recognize multiple objects
simultaneously. For example, all of the objects in Figure 1
are simple in construction, but if you are asked to find ‘T’s
that are both purple and green, you will find that you need
to scrutinize each item until you stumble upon the targets
(there are four). It is introspectively obvious that you can
see a set of items and could give reasonable estimates for
their number, color, and so forth. However, recognition of a
specific type of item requires another step of binding the
visual features together [3]. That step is capacity limited
and, often, attention demanding [4] (however, see [5]).

In the case of Figure 1, the ability to recognize one object
is also going to be limited by the proximity of other, similar
items. These ‘crowding’ phenomena have attracted in-
creasing interest in the past few years ([6,7]). However,
although it would be a less compelling demonstration, it
would still be necessary to attend to item after item to bind
their features and recognize them even if there were only a
few items and even if those were widely spaced [8].

The selection mechanism is a serial–parallel hybrid

Whereas it is clear that object recognition is capacity
limited, the nature of that limitation has been less clear
(for an earlier discussion of this issue, see [9]). The classic
debate has been between ‘serial’ models that propose that
items are processed one after the other [2] and ‘parallel’
models that hold that multiple objects, perhaps all objects,
are processed simultaneously but that the efficiency of
processing of any one item decreases as the number of
items increases [10,11]. The debate has been complicated
by the fact that the classic reaction time data, used inmany
experiments, are ambiguous in the sense that variants of
serial and parallel models can produce the same patterns
of data [12]. Neural evidence has been found in support of
both types of process (Box 1).

Similar to many cognitive science debates, the correct
answer to the serial–parallel debate is probably ‘both’.
Consider the timing parameters of search. One can esti-
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mate the rate at which items are processed from the slopes
of the reaction time (RT) by set size functions. Although the
estimate depends on assumptions about factors such as
memory for rejected distractors (Box 2), it is in the range of
20–50 msec/item for easily identified objects that do not
need to be individually fixated [13]. This estimate is sig-
nificantly faster than any estimate of the total amount of
time required to recognize an object [14]. Even on the short
end, object recognition seems to require more than 100
msec/item (<10 items/sec). Note that we are speaking
about the time required to identify an object, not the
minimum time that an observer must be exposed to an
object, which can be very short indeed [15].

As a solution to thismismatch of times,Moore andWolfe
[16] proposed a metaphorical ‘carwash’ (also called ‘pipe-
line’ in computer science). Items might enter the binding

and recognition carwash one after another every 50msec or
so. Each itemmight remain in the process of recognition for
several hundred milliseconds. As a consequence, if an
experimenter looked at the metaphorical front or the back
of the carwash, serial processing would dominate, but if
one looked at the carwash as a whole, one would see
multiple items in the process of recognition in parallel.

Other recent models also have a serial–parallel hybrid
aspect, although they are often different from the carwash
in detail [17,18]. Consider, for example, models of search
with a primary focus on eye movements [19–21]. Here, the
repeated fixations impose a form of serial selection every
250 msec or so. If one proposes that five or six items are
processed in parallel at each fixation, one can produce the
throughput of 20–30 items/second found in search experi-
ments. Interestingly, with large stimuli that can be re-
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Figure 1. Find the four purple-and-green Ts. Even though it is easy to identify such targets, this task requires search.

Box 1. Neural signatures of parallel and serial processing

What would parallel and serial processing look like at a neuronal

level? One type of parallel processing in visual search is the

simultaneous enhancement of all items with a preferred feature (e.g.

all the red items). Several studies have shown that, for cells

demonstrating a preference for a specific feature, the preference is

stronger when the task is to find items with that feature [77]. For

serial processing, one would like to see the ‘spotlight’ of attention

moving around from location to location. Buschman and Miller [78]

saw something similar to this when it turned out that monkeys in

their experiment liked to search a circular array of items in the same

sequence on every trial. As a result, with multiple electrodes in

place, the authors could see an attentional enhancement rise at the 3

o’clock position, then fall at 3 and rise at 6, as attention swept

around in a serial manner to find a target that might be at the 9

o’clock position in that particular trial.

Similar shifts of attention can be seen in human evoked potential

recordings [79]. Bichot et al. [80] produced an attractive illustration

of both processes at work in visual area, V4. When the monkey was

searching for ‘red’, a cell that liked red would be more active, no

matter where the monkey was looking and/or attending. If the next

eye movement was going to take the target item into the receptive

field of the cell, the cell showed another burst of activity as serial

attention reached it in advance of the eyes.

Box 2. Memory in visual search

There is a body of seemingly contradictory findings about the role of

memory in search. First, there is the question of memory during a

search. Do observers keep track of where they have been, for

example, by inhibiting rejected distractors? There is some evidence

for inhibition of return in visual search [81,82], although it seems

clear that observers cannot use inhibition to mark every rejected

distractor [16,83]. Plausibly, memory during search serves to

prevent perseveration on single salient items [82,84].

What about memory for completed searches? If you find a target

once, are you more efficient when you search for it again? A body of

work on ‘repeated search’ finds that search efficiency does not

improve even over hundreds of trials of repetition [85,86]. By contrast,

observers can remember objects that have been seen during search

[87] and implicit memory for the arbitrary layout of displays can speed

their response [88]. How can all of these facts be true? Of course,

observers remember some results of search. (Where did I find those

scissors last time?). The degree to which these memories aid

subsequent search depends on whether it is faster to retrieve the

relevant memory or to repeat the visual search. In many simple tasks

(e.g. with arrays of letters; [86]), memory access is slower than is

visual search [85]. In many more commonplace searches (those

scissors), memory will serve to speed the search.
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solved in the periphery, the pattern of response time data
is similar with and without eye movements [22]. Given the
close relationship of eye movements and attention [23], it
could be proposed that search is accomplished by selecting
successive small groups of items, whether the eyes move or
not. Note that all of these versions are hybrids of some
serial selection and parallel processing.

A set of basic stimulus attributes guide search

Object recognition might require attention to an object
[24], but not every search requires individual scrutiny of
random items before the target is attended. For example,
in Figure 1, it is trivial to find the one tilted ‘T’. Orientation
is one of the basic attributes that can guide the deployment
of attention. A limited set of attributes can be used to
reduce the number of possible target items in a display. If
you are looking for the big, red, moving vertical line, you
can guide your attention toward the target size, color,
motion and orientation. We label the idea of guidance by
a limited set of basic attributes as ‘classic guided search’
[25]. The set of basic attributes is not perfectly defined but
there are probably between one and two dozen [26]. In the
search for the green-and-purple Ts of Figure 1, guidance
fails. Ts and Ls both contain a vertical and a horizontal
line, so orientation information is not useful. The nature of
the T or L intersection is also not helpful [27]; neither can
guidance help by narrowing the search to the items that
are both green and purple. When you specify two features
(here two colors) of the same attribute, attention is guided
to the set of items that contain either purple or green. In
Figure 1, this is the set of all items [28] so no useful
guidance is possible.

The internal representation of guiding attributes is
different from the perceptual representation of the same
attributes. What you see is not necessarily what guides
your search. Consider color as an example. An item of
unique color ‘pops out’. Youwould have no problemfinding
the one red thing among yellow things [29]. The red thing
looks salient and it attracts attention. It is natural to
assume that the ability to guide attention is basically
the same as the perceived salience of the item [30,31].
However, look for the desaturated, pale targets in Figure 2
(there are two in each panel). In each case, the target lies
halfway between the saturated and white distractors in a

perceptual color space. In the lab, although not in this
figure, the colors can be precisely controlled so that the
perceived difference between red and pale red is the same
as the difference betweenpale greenandgreen or pale blue
and blue. Nevertheless, the desaturated red target will be
found more quickly [32], a clear dissociation between
guidance and perception. Similar effects occur for other
guiding attributes, such as orientation [33]. The represen-
tation guiding attention should be seen as a control device,
managing access to the binding and recognition bottle-
neck. It does not reveal itself directly in conscious percep-
tion.

Visual search in natural(istic) scenes
The failure of classic guided search

To this point, we have described what could be called
‘classic guided search’ [1,25]. Now, suppose that we wanted
to apply this classic guided search theory to the real world.
Find the bread in Figure 3a. Guided search, and similar
models, would say that the one to two dozen guiding
attributes define a high-dimensional space in which objects
would be quite sparsely represented. That is, ‘bread’ would
be defined by some set of features [21]. If attention were
guided to objects lying in the portion of the high-dimen-
sional feature space specified by those features, few other
objects would be found in the neighborhood [34]. Using a
picture of the actual bread would produce better guidance
than its abstract label (‘bread’) because more features of
the specific target would be precisely described [35]. So in
the real world, attention would be efficiently guided to the
few bread-like objects. Guidance would reduce the ‘func-
tional set size’ [36].

It is a good story, but it is wrong or, at least, incomplete.
The story should be just as applicable to search for the loaf
of bread in Figure 3b; maybe more applicable as these
objects are clearly defined on a blank background. Howev-
er, searches for isolated objects are inefficient [37], whereas
searches such as the kitchen search are efficient (given
some estimate of ‘set size’ in real scenes) [38]. Models such
as guided search, based on bottom-up and top-down pro-
cessing of a set of ‘preattentive’ attributes, seem to fail
when it comes to explaining the apparent efficiency of
search in the real world. Guiding attributes do some work
[21,39], but not enough.

[()TD$FIG]
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Figure 2. Find the desaturated color dots. Colors are only an approximation of the colors that would be used in a carefully calibrated experiment. The empirical result is that

it is easier to find the pale-red (pink) targets than to find the pale-green or -blue targets.
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The way forward: expanding the concept of guidance for

search in scenes

Part of the answer is that real scenes are complex, but never
random. Elements are arranged in a rule-governedmanner:
people generally appear on horizontal surfaces [40,41],
chimneys appear on roofs [42] and pots on stoves [43]. Those
and other regularities of scenes can provide scene-based
guidance.Borrowing fromthememory literature,werefer to
‘semantic’ and ‘episodic’ guidance. Semantic guidance
includes knowledge of the probability of the presence of
an object in a scene [43] and of its probable location in that
scene given the layout of the space [40,44], as well as inter-
object relations (e.g. knives tend to be near forks, [45]).
Violations of these expectations impede object recognition
[46] and increase allocation of attention [43]. It can take
longer to find a target that is semantically misplaced, (e.g.
searching for the bread in the sink [47]). Episodic guidance,
which we will merely mention here, refers to memory for a
specific, previously encountered scene that comprises infor-
mation about specific locations of specific objects [48]. Hav-
ing looked several times, you know that the bread is on the
counter to the left, not in all scenes, but in this one. The role
ofmemory in search is complex (Box2), but it is the case that
you will be faster, on average, to find bread in your kitchen
than in another’s kitchen.

When searching for objects in scenes, classic sources of
guidance combine with episodic and semantic sources of
guidance to direct your attention efficiently to those parts
of the scene that have the highest probability of containing
targets [40,49–51]. In naturalistic scenes, guidance of eye
movements by bottom-up salience seems to play a minor
role compared with guidance by more knowledge-based
factors [51,52]. A short glimpse of a scene is sufficient to
narrow down search space and efficiently guide gaze [53] as
long as enough time is available to apply semantic knowl-
edge to the initial scene representation [44]. However,
semantic guidance cannot be too generic. Presenting a
word prime (e.g. ‘kitchen’) instead of a preview of the scene
does not produce much guidance [35]. Rather, the combi-
nation of semantic scene knowledge (kitchens) with infor-

mation about the structure of the specific scene (this
kitchen) seems to be crucial for effective guidance of search
in real-world scenes [44,51].

A problem: where is information about the scene

coming from?

It seems reasonable to propose that semantic and episodic
information about a scene guides search for objects in the
scene, but where does that information come from? For
scene information to guide attention to probable locations
of ‘bread’ in Figure 3a, youmust know that the figure shows
something like a kitchen. One might propose that the
information about the scene develops as object after object
is identified. A ‘kitchen’ hypothesis might emerge quickly if
you were lucky enough to attend first to the microwave and
then to the stove, but if you were less fortunate and
attended to a lamp and a window, your kitchen hypothesis
might come too late to be useful.

A nonselective pathway to gist processing
Fortunately, there is another route to semantic scene
information. Humans are able to categorize a scene as a
forest without selecting individual trees for recognition
[54]. A single, brief fixation on the kitchen of Figure 3a
would be enough to get the ‘gist’ of that scene. ‘Gist’ is an
imperfectly defined term but, in this context, it includes the
basic-level category of the scene, an estimate of the dis-
tributions of basic attributes, such as color and texture
[55], and the spatial layout [54,56–58]. These statistical
and structural cues allow brief exposures to support above-
chance categorization of scenes into, for example, natural
or urban [54,59,60] or containing an animal [15,61]. Within
a single fixation, an observer would know that Figure 3a
was a kitchen without the need to segment and identify its
component objects. At 20–50 objects/second, that observer
will have collected a few object identities as well but, on
average, these would not be sufficient to produce categori-
zation [54,62].

How is this possible? The answer appears to be a two-
pathway architecture somewhat different from, but per-

[()TD$FIG]
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(a) (b)

Figure 3. Find the loaf of bread in each of (a) and (b).
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haps related to, previous two-pathway proposals [63,64],
and somewhat different from classic two-stage, preatten-
tive-attentivemodels (Box 3). The basic idea is cartooned in
Figure 4. Visual input feeds a capacity-limited ‘selective
pathway’. As described earlier, selection into the bottle-
neck ismediated by classic guidance and, when possible, by
semantic and episodic guidance. In this two-pathway view,
the rawmaterial for semantic guidance could be generated
in a nonselective pathway that is not subject to the same
capacity limits. Episodic guidance would be based on the
results of selective and nonselective processing.

What is a ‘nonselective pathway’? It is important not to
invest a nonselective pathwaywith toomany capabilities. If
all processing could be done without selection and fewer
capacity limits, one would not need a selective pathway.
Global nonselective image processing allows observers to
extract statistical information rapidly from the entire im-
age. Observers can assess the mean and distribution of a
variety of basic visual feature dimensions: size [65], orien-
tation [66], some contrast texture descriptors [67], velocity
and direction of motion [68], magnitude estimation [69],
center of mass for a set of objects [70] and center of area
[71]. Furthermore, summary statistics can be calculated for
more complex attributes, such as emotion [72] or the pres-
ence of classes of objects (e.g. animal) in a scene [73].

Using these image statistics, models and (presumably)
humans, can categorize scenes [54,56,57] and extract basic

Box 3. Old and new dichotomies in theories of visual search

The dichotomy between selective and nonselective pathways,

proposed here, is part of a long tradition of proposing dichotomies

between processes with strong capacity limits that restrict their

work to one or a few objects or locations and processes that are able

to operate across the entire image. It is worth briefly noting the

similarities and differences with some earlier formulations.

Preattentive and attentive processing

Preattentive processing is parallel processing over the entire image.

Similar to nonselective processing, it is limited in its capabilities. In

older formulations such as Feature Integration Theory [2], it handled

only basic features, such as color and orientation, but it could be

expanded to include the gist and statistical-processing abilities of a

nonselective pathway. The crucial difference is embodied in the

term ‘preattentive’. In its usual sense, preattentive processing refers

to processing that occurs before the arrival in time or space of

attentive processing [89]. Nonselective processing, by contrast, is

proposed to occur in parallel with selective processing, with the

outputs of both giving rise to visual experience.

Early and late selection

The nonselective pathway could be seen as a form of late selection

in which processing proceeds to an advanced state before any

bottleneck in processing [90]. The selective pathway embodies early

selection with only minimal processing before the bottleneck.

Traditionally, these have been seen as competing alternatives that

coexist here. However, traditional late selection would permit object

recognition (e.g. word recognition) before a bottleneck. The

nonselective pathway, although able to extract some semantic

information from scenes, is not proposed to have the ability to

recognize either objects or letters.
[()TD$FIG]
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Figure 4. A two-pathway architecture for visual processing. A selective pathway can bind features and recognize objects, but it is capacity limited. The limit is shown as a

‘bottleneck’ in the pathway. Access to the bottleneck is controlled by guidance mechanisms that allow items that are more likely to be targets preferential access to feature

binding and object recognition. Classic guidance, cartooned in the box above the bottleneck, gives preference to items with basic target features (e.g. color). This article

posits scene guidance (semantic and episodic), with semantic guidance derived from a nonselective pathway. This nonselective pathway can extract statistics from the

entire scene, enabling a certain amount of semantic processing, but not precise object recognition.
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spatial structure [54,59]. This nonselective information
could then provide the basis for scene-based guidance of
search. Thus, nonselective categorical information, per-
haps combined with the identification of an object or two
by the selective pathway, could strongly and rapidly sug-
gest that Figure 3a depicts a kitchen. Nonselective struc-
tural information could give the rough layout of surfaces in
the space. In principle, these sources of information could
be used to direct the resources of the selective pathway
intelligently so that attention and the eyes can be deployed
to probable locations of bread.

Your conscious experience of the visual world is com-
prised of the products of both pathways. Returning to the
example at the outset of this article, when you have not yet
found the object that is ‘right in front of your eyes’, your
visual experience at that location must be derived primar-
ily from the nonselective pathway. You cannot choose to
see a nonselective representation in isolation, but you can
gain some insight into the contributions of the two path-
ways from Figure 5. The nonselective pathway would ‘see’
the forest [54] and could provide some information about
the flock of odd birds moving through it. However, identi-
fication of a tree with both green and brown boughs or of a
bird heading to the right would require the work of the
selective path [61].

Expert searchers, such as radiologists hunting for signs
of cancer or airport security officers searching for threats,
might have learned to make specific use of nonselective
signals. With some regularity, such experts will tell you

that they sometimes sense the presence of a target before
finding it. Indeed, this ‘Gestalt process’ is a component of a
leading theory of search in radiology [74]. Doctors and
technicians screening for cancer can detect abnormal
cases at above-chance levels in a single fixation [75].
The abilities of a nonselective pathway might underpin
this experience. Understanding how nonselective proces-
sing guides capacity-limited visual search could lead to
improvements in search tasks that are, literally, a matter
of life and death.

Concluding remarks
What is next in the study of search in scenes? It is still not
understood how scenes are divided up into searchable
objects or proto-objects [76]. There is much work to be
done to describe fully the capabilities of nonselective pro-
cessing and even more to document its impact on selective
processes. Finally, we would like to know if there is a
neurophysiological reality to the two pathways proposed
here. Suppose one ‘lesioned’ the hypothetical selective
pathway. The result might be an agnosic who could see
something throughout the visual field but could not iden-
tify objects. A lesion of the nonselective pathway might
produce a simultagnosic or Balint’s patient, able to identify
the current object of attention but otherwise unable to see.
This sounds similar to the consequences of lesioning the
ventral and dorsal streams, respectively [64], but more
research will be required before ‘selective’ and ‘nonselec-
tive’ can be properly related to ‘what’ and ‘where’.

[()TD$FIG]
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Figure 5. What do you see? How does that change when you are asked to look for an untilted bird or trees with brown trunks and green boughs? It is proposed that a

nonselective pathway would ‘see’ image statistics, such as average color or orientation, in a region. It could get the ‘gist’ of forest and, perhaps, the presence of animals.

However, it would not know which trees had brown trunks or which birds were tilted.
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