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Summary

Target prevalence powerfully influences visual search
behavior. In most visual search experiments, targets appear

on at least 50% of trials [1–3]. However, when targets are
rare (as in medical or airport screening), observers shift

response criteria, leading to elevated miss error rates [4,
5]. Observers also speed target-absent responses and may

make more motor errors [6]. This could be a speed/accuracy
tradeoff with fast, frequent absent responses producing

more miss errors. Disproving this hypothesis, our experi-
ment one shows that very high target prevalence (98%) shifts

response criteria in the opposite direction, leading to
elevated false alarms in a simulated baggage search. How-

ever, the very frequent target-present responses are not
speeded. Rather, rare target-absent responses are greatly

slowed. In experiment two, prevalence was varied sinusoi-
dally over 1000 trials as observers’ accuracy and reaction

times (RTs) were measured. Observers’ criterion and target-
absent RTs tracked prevalence. Sensitivity (d0) and target-

present RTs did not vary with prevalence [7–9]. These results

support a model in which prevalence influences two param-
eters: a decision criterion governing the series of perceptual

decisions about each attended item, and a quitting threshold
that governs the timing of target-absent responses. Models

in which target prevalence only influences an overall deci-
sion criterion are not supported.

Results

Experiment One: High Target Prevalence Elevates False

Alarms but Does Not Speed Target-Present Responses
In experiment one, 13 observers performed a simulated
baggage search task looking for weapons (guns and knives)
that were present on either 50% or 98% of bags. Reaction
times (RTs) less than 200 ms or greater than 15,000 ms were
excluded. One observer was removed from further analysis
for an excess of very fast RTs. For the remaining 12 observers,
this led to the removal of 0.5% of trials as outliers.

Figure 1A shows the average error rates for 98% and 50%
prevalence. The false-alarm rate increased dramatically from
0.18 at balanced (50%) prevalence to 0.58 at high prevalence
in this experiment [t(11) = 8.0, p < 0.0001]. Miss errors dropped
from 0.15 to 0.02 [t(11) = 8.5, p < 0.0001]. Figure 1B shows the
signal detection measures d0 (sensitivity) and c (criterion).
d0 was modestly reduced [t(11) = 2.4, p < 0.05]. However, the
use of d0 assumes equal variance of signal and noise distribu-
tions. Previous work indicates that this task is better fit by an
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unequal variance model (as shown in Figure S1C available
online, the slope of the z-transformed receiver operating char-
acteristic is about 0.6 rather than the equal variance slope of
1.0 [4]). If corrected for unequal variance, the change in crite-
rion (calculated as Macmillan and Creelman’s ‘‘C2’’; p. 66 in
[10]) remains essentially the same and highly significant.

If the increase in false alarms were the result of a speed/
accuracy tradeoff, one might expect target-present RTs to
become faster, following the pattern of target-absent RTs at
low prevalence. However, as can be seen in Figure 1C, the
prevalence manipulation had no effect on either hit [t(11) = 1.43,
p = 0.18] or false-alarm [t(11) = 0.93, p = 0.37] RTs, disconfirm-
ing the tradeoff hypothesis. Interestingly, the only effect on
RT that we observed was a massive slowing of target-absent
responses [correct absent: t(11) = 6.67, p < 0.0001; miss:
t(11) = 5.11, p < 0.0001].

Experiment Two: Variable Prevalence Principally Affects
Criterion and Target-Absent Reaction Time, Not d0

or Target-Present Reaction Time
In experiment two, 12 observers performed 1000 trials of the
simulated baggage search as target prevalence varied
sinusoidally from high to low and back to high. RTs less than
200 ms or greater than 15,000 ms were removed as outliers.
This removed 0.56% of trials. Trials were binned into 20 blocks
of 50 trials each. At very low prevalence, there were very few
target-present trials, whereas at very high prevalence, there
were very few target-absent trials. We eliminated empty cells
from analysis by pooling responses over all 12 observers.
For the RT analyses, any cell with fewer than 20 trials across
all observers was excluded from analysis.

Figure 2A shows the errors trading off as a function of prev-
alence. Again, based on evidence that this is an unequal vari-
ance task (see Supplemental Experimental Procedures), we
calculated da as the measure of sensitivity and C2 as the
measure of criterion. Because these statistics are based on
pooled data, one should be cautious in interpreting them.
Nevertheless, Figure 2B shows that criterion varied systemat-
ically with prevalence whereas sensitivity did not. C2 and
prevalence were significantly correlated (Pearson r = 20.92;
95% confidence interval [CI]: 20.97 to 20.80, p < 0.0001). In
contrast, da was not systematically related to prevalence
(Pearson r = 0.20; CI: 20.27 to 0.59, p = 0.39). Results do not
change markedly if one calculates d0 and c. It is criterion that
changes with prevalence. Note that peak criterion value in
Figure 2B lagged behind the lowest prevalence. This reflects
the number of trials over which the observers based their
internal estimates of prevalence. These data do not permit
a precise calculation, but it appears that observers compute
prevalence over about four dozen trials.

Turning to the RT data, Figure 2C shows that, as in experi-
ment one, it is the target-absent RTs that are clearly respon-
sive to prevalence. Looking at target-present trials (black
symbols), it can be seen that both hit and false-alarm RTs
decline modestly over the course of experiment. This mono-
tonic trend could represent a general speeding of RT with
practice but does not reflect the change in prevalence.
The variation in target-absent response times across the
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Figure 1. Experiment One: Very High Prevalence

Elevates False Alarms and Target-Absent Reac-

tion Times

(A) False-alarm (FA) and miss error rates as

a function of target prevalence (50% and 98%).

(B) Signal detection measures: average sensi-

tivity (d0) and criterion (c) values.

(C) Average reaction time (RT) for correct target-

present (hit) and target-absent reactions.

Error bars are 6 one standard error of the mean.
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experiment is about five times greater and more clearly follows
prevalence.

Discussion

As anticipated by work in other domains, varying target prev-
alence causes a tradeoff between false-alarm and miss errors
[7–9]. What is novel and informative here is that, for RT, the
main effect of prevalence falls on the target-absent responses.
Taken together, the pattern of RT and error data falsifies some
plausible theories. For example, the pattern of RTs is not
consistent with any account holding that RTs are speeded
when observers can predict the answer. Were that the case,
RTs should be slowest at 50% prevalence and fastest at very
high and low prevalence. This is not what the data in Figure 2
show.

A visual search task might be thought of as a two-alternative
forced choice (2AFC) decision between a target-present and
a target-absent response. 2AFC tasks can be modeled as an
accumulation of information toward one of two response
boundaries [11–15] (see Figure 3). Errors occur when the noise
perturbing the drift toward one boundary causes the accumu-
lation to reach the other boundary by mistake. Our data
constrain such diffusion models. Specifically, we argue that
modeling the effects of prevalence will require changing
more than one parameter. Changing prevalence shifts crite-
rion. To vary criterion in a standard diffusion model, one can
move the starting point. In Figure 3, if the starting point moved
toward the ‘‘yes’’ boundary at high prevalence, false alarm
errors would become more common and misses less com-
mon, as desired, without changing sensitivity (represented
by the separation between ‘‘yes’’ and ‘‘no’’ boundaries).
However, this would also lead to target-present RTs becoming
faster and target-absent RTs slower. This speeding of target-
present RTs at high prevalence is not
seen. A change in the target-absent but
not target-present RTs could be pro-
duced by moving the ‘‘no’’ boundary.
However, because sensitivity (d0 or da)
varies with the separation between the
decision boundaries, moving the ‘‘no’’
boundary down would increase sensi-
tivity at high prevalence, a pattern not
seen in our data. (See Supplemental
Experimental Procedures for details of
simulation of these manipulations of
a diffusion model.)

Although the pattern of the data might
be captured by simultaneously changing
two parameters in a standard diffusion
model [12], we adopt a somewhat dif-
ferent approach, the ‘‘multiple-decision
model,’’ illustrated in Figure 4, because search tasks like
ours are not actually simple 2AFC tasks. At any given moment,
the observer evaluates some aspect of the display. Figure 4
illustrates the observer selecting a single item. In an ‘‘internal
decision’’ stage, the observer makes a 2AFC decision about
this information. If the response, R, exceeds a criterion, a target
is deemed to be present and the observer makes a ‘‘yes’’
response. If not, the observer continues to search. A second
process generates ‘‘no,’’ absent responses. This is modeled
here as a diffusion toward a quitting threshold. If the diffusion
value, Q, exceeds that threshold, a ‘‘no’’ response is gener-
ated. Otherwise, a new item is selected and search continues.

Here, the two parameters that are affected by prevalence are
the internal decision criterion and the quitting threshold. At
high prevalence, criterion moves left, making ‘‘yes’’ responses
more likely, and the quitting threshold moves up, making
target-absent RTs slower. At low prevalence, the parameters
shift in the opposite direction. As shown in Figures S1D and
S1E, simulation of a model of this sort produces the basic
pattern of results seen in the experiments reported here.

The structure proposed in Figure 4 generalizes quite natu-
rally beyond simple present/absent search tasks and may
have some utility in explaining other search phenomena. For
example, many radiology tasks require that observers find
not one but all targets (e.g., multiple lung nodules). In terms
of the model presented here, this means that a ‘‘present’’
response does not end search. The cycle of selection and
perceptual decision would continue until the quitting threshold
was reached. ‘‘Satisfaction of search’’ is a known problem in
search for an unknown number of targets [16, 17]. This is the
observation that the probability of detecting one target is lower
if another target has been detected first. This phenomenon
could be a consequence of the dual-threshold nature of
search. Suppose that two trials have the same quitting



Figure 2. Experiment Two: Changing Target Prevalence Changes the

Pattern of Errors and Target-Absent Reaction Times

(A) Miss errors (solid black symbols) and false-alarm errors (open gray

symbols) trade off as prevalence (dashed line) varies over 1000 trials.

(B) da (solid black symbols), a signal detection measure of sensitivity, does

not vary systematically with prevalence, but C2 (open gray symbols), a crite-

rion measure, does.

(C) Hit RTs (solid black symbols) change very little with prevalence, whereas

true negative responses (open gray symbols) vary markedly. False-alarm

errors (open black symbols) do not vary with prevalence, though they

appear to become faster during the experiment. Miss errors (solid gray

symbols) vary with prevalence in a manner similar to true negatives. (See

also Figures S1A–S1C.)

Figure 3. The Drift Diffusion Model

In a standard drift diffusion account of a two-alternative forced choice

(2AFC) task, information begins accumulating at a start point. It generates

one response (here, ‘‘yes’’) if it reaches an upper bound and another

(‘‘no’’) if it reaches a lower bound. For a fixed drift rate, sensitivity (d0) can

be varied by varying the separation of the bounds, and criterion can be

varied by changing the starting point. (See also Figures S1D and S1E.)

Figure 4. A Multiple-Decision Model for Visual Search

In this model, the observer makes a 2AFC decision about each item that is

selected. If an item is classified as a target, a ‘‘yes’’ response is generated. If

not, a new item will be selected unless a target-absent decision is generated

when a quitting signal exceeds its threshold. The quitting signal is modeled

as a diffusion process. (See also Figures S1D and S1E.)
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threshold. In one trial, the image contains T1 and T2. In the
other, only T2 is present. If we suppose that it takes some
time to deal with T1 and that the quitting threshold discounts
this fact, then the chance of reaching T2 will be lower on the
T1 + T2 trial than on the T2 alone trial. Further research would
be needed to test this hypothetical account of satisfaction of
search, but the account does capture the possibility of a sepa-
ration between finding a target and ending a search.

Experimental Procedures

Experiment One

Participants

Thirteen paid participants between the ages of 18 and 55 were tested in all

conditions. Each participant reported no history of eye or muscle disorders.

All had 20/25 or better vision and passed Ishihara’s tests for color blindness.

Informed consent was obtained for all participants, and each participant

was paid US $10/hour.

Stimuli

Realistic bag stimuli were created by placing X-ray images of assorted

objects in X-ray images of empty bags. Items were semitransparent and
could overlap. Component bags and objects were X-ray images provided

by the Transportation Security Laboratory of the United States Department

of Homeland Security. Set size was varied by varying the number of items

added to the bag (3, 6, 12, or 18). Bags and individual objects were scaled

in an appropriate manner so, as an example, a computer would be bigger

than an iPod. Observers sat at approximately 57 cm from the screen. At

this distance, bags subtended a range of sizes 9.5� in height 3 16� in width

to 20� in height 3 21.5� in width. Eight pieces of clothing were added to each

bag but were not counted in the set size. In these images, clothing adds an

indistinctly shaped orange haze to the image. Stimuli were presented on
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Macintosh computers running MATLAB 7.5 with the Psychophysics

Toolbox, version 3 (http://psychtoolbox.org/; [18, 19]).

Procedure

To familiarize observers with the threat stimuli, they were first briefly shown

20 examples of weapons for 1 s in isolation. Next, they were given 100 prac-

tice trials at 50% prevalence with full feedback on the correctness of

responses. Observers were instructed to indicate as quickly and accurately

as possible whether a target was present or absent. On each trial, a fixation

cross and audible click were followed after 200 ms by the stimulus. The

stimulus remained visible until the observer responded. A 500 ms blank

interval preceded the start of the next trial.

After practice, observers completed the two experimental blocks: 200

trials at 50% prevalence and 1000 trials at 98% prevalence. Order of the

two blocks was counterbalanced over observers. Observers were told

that bags without weapons would be ‘‘frequent’’ in the 50% prevalence

condition, and that bags without weapons would be ‘‘rare’’ in the 98% prev-

alence condition. We emphasized that they should try to be as quick and

accurate as possible in correctly identifying bags without weapons. Full

feedback was given after each trial. If a target was present, it was outlined

with a box and shown to the observer. A 2 min break was enforced every 200

trials (about every 20 min).

Experiment Two

Participants

Twelve paid participants between the ages of 18 and 55 were tested in all

conditions. Each participant reported no history of eye or muscle disorders.

All had 20/25 or better vision and passed Ishihara’s tests for color blindness.

Informed consent was obtained for all participants, and each participant

was paid US $10/hour.

Procedure

The stimuli and general methods were essentially identical to those of

experiment one. Observers were familiarized with the targets in advance

and were then tested for 100 trials of training at 50% prevalence with full

feedback. Finally, over the course of a block of 1000 trials with full feedback,

prevalence varied sinusoidally through one cycle from 100% on trial 1 to 0%

at trial 500 and back to 100% by trial 1000. Any given trial could be target

present or target absent, with the probability of target presence determined

by the current prevalence. Observers were told that the probability of

a target would vary over time. A 2 min break was enforced after every 200

trials (about every 20 min).
Supplemental Information

Supplemental Information includes one figure and Supplemental

Experimental Procedures and can be found with this article online at

doi:10.1016/j.cub.2009.11.066.
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