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Cognitive flexibility is a crucial human ability allowing efficient
adaptation to changing task challenges. Although a person’s de-
gree of flexibility can vary from moment to moment, the conditions
regulating such fluctuations are not well understood. Using a
task-switching procedure with fMRI, we found several brain re-
gions in which neural activity preceding each trial predicted sub-
sequent cognitive flexibility. Specifically, as pretrial activity in-
creased, performance improved on trials when the task switched
but did not improve when the task repeated. Regions from which
flexibility could be predicted reliably included the basal ganglia,
anterior cingulate cortex, prefrontal cortex, and posterior parietal
cortex. Although further analysis revealed similarities across the
regions in how flexibility was predicted, results supported the
existence of multiple independent sources of prediction. These
results reveal distinct neural mechanisms underlying fluctuations
in cognitive flexibility.

basal ganglia � fMRI � task switching � cognitive control

Juggling several tasks at once, or multitasking, is a fact of
everyday life and becomes increasingly salient with the grow-

ing use of products such as mobile telephones, wireless e-mail
devices, and portable music players. Given the wide array of
tasks people successfully pack into their daily routines, the
capacity to multitask is among the most remarkable endowments
of the human mind. Nevertheless, this capacity, known as
‘‘cognitive flexibility,’’ does come at a cost: empirical investiga-
tions of task switching consistently show that performance upon
switching to a new task is slower and more error prone than
performance when repeating a task (1–3). These behavioral
costs are difficult to avoid even when subjects are given ample
time to prepare for the upcoming task (1, 3), but variations in the
size of this switch cost have been observed within experimental
sessions (4, 5), suggesting that an individual’s f lexibility can
fluctuate from moment to moment.

Unfortunately, it is unclear how fluctuations in flexibility can
be predicted, although such knowledge would carry considerable
value. From a practical standpoint, for instance, productivity
could be maximized by reserving multitasking activities for
known periods of high flexibility and scheduling single-task
activities for periods of low flexibility. From a theoretical
standpoint, identifying the predictors of cognitive flexibility
could facilitate a deeper understanding of the mechanisms
governing cognitive control.

In this study, we used fMRI to predict cognitive flexibility.
Because fMRI is noninvasive and imposes minimal additional
task demands on subjects, it potentially can reveal variations in
flexibility with negligible interference to the task-switching
procedure.

Our particular aim was to learn if brain activity preceding task
cues could predict task-switching performance. Probing before
the cue, when the task to be performed has not yet been revealed
to subjects, distinguishes our work from previous studies that
have analyzed neural activity after the task is known. Such
studies are geared to measure task-specific processing, for which
rule representations tailored to the known task are implemented
(6, 7). Focusing analysis on the post-cue preparation period has

provided critical insights about the role of task-specific process-
ing during task-switching performance (8–10), in some cases
linking the magnitude of post-cue activity to the degree of
task-switching success (11–14). However, cognitive flexibility
relates to the ability to react to any future task challenge rather
than to a specifically cued task; cognitive flexibility thus requires
that preparatory bias toward performing a specific task, at the
expense of other tasks, be minimal. Thus, we focused on neural
activity preceding the cue.

Results
Behavior. Twenty-one subjects performed task switching during
a single fMRI session. On each trial they were cued to perform
1 of 2 tasks on a subsequent target digit (a magnitude or a parity
judgment; see Methods). The order of trial presentation was
randomized so that half of the trials consisted of task switches
(e.g., magnitude following parity), and the remaining trials
consisted of task repetitions (e.g., magnitude following magni-
tude). The randomization ensured that the task on each trial
could not be predicted before the cue (15).

One subject was excluded because of low accuracy (67.8%).
Data from the remaining subjects revealed robust behavioral
switch costs, with response times (RT) significantly slower on
switch (684 ms) than on repeat trials (642 ms), t (19) � 4.39, P �
0.0004. Accuracy was 96.2% on switch trials and 97.1% on repeat
trials, t (19) � 1.74, P � 0.1.

Cognitive Flexibility Predicted by Pretrial fMRI Signal. In estimating
neural activity preceding the task cue, we defined pretrial signal
as the blood oxygenation level-dependent (BOLD) fMRI signal
collected during the single volume acquisition preceding the task
cue (i.e., from �1.5 to 0 s). We then analyzed how this measure
separately predicted performance on switch and repeat trials.
Given that increases in flexibility should translate to smaller
switch costs, RT on switch and repeat trials should converge as
flexibility increases. Thus, if pretrial signal carries information
about flexibility, its relationship to RT on switch and repeat trials
must manifest differently.

For each subject, and at every voxel, linear regression was
carried out using pretrial signal as a predictor for RT (16); as
noted previously, this regression was done separately for switch
and repeat trials. The resulting slope coefficients reflect the
degree to which RT changed as a function of pretrial signal (e.g.,
negative values indicate that increasing pretrial signal predicts
decreasing RT). To determine whether the slopes differed
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between switch and repeat trials, paired t tests were performed
for each voxel.

Results confirmed that neural activity preceding task cues indeed
could predict cognitive flexibility; a number of brain regions
emerged in which slopes on switch and repeat trials differed
significantly, including medial and lateral prefrontal cortex (PFC),
posterior parietal cortex (PPC), anterior cingulate cortex (ACC),
anterior insula, and subcortical structures including the basal gan-
glia (BG) and superior colliculus (SC) (Fig. 1 A and B; Table 1).
Most of these regions were characterized by significantly negative
slopes on switch trials and non-negative slopes on repeat trials, a
pattern reflective of decreasing switch costs with increasing pretrial
signal. This pattern is consistent with the notion that increased
flexibility improves performance on trials when task set reconfigu-
ration is needed (i.e., on switch trials).

An alternative ‘‘f loor effect’’ interpretation holds that pretrial
signal confers equal benefits upon all RTs, irrespective of task
transition, but performance on the repeat trials has less room to
improve because subjects already are responding quickly. How-
ever, although this account predicts modestly negative or neg-
ligible slopes on repeat trials, the slopes in all the regions were
numerically positive (i.e., RTs became slower as pretrial signal
increased). These positive slopes, which reached significance in
a subset of the regions (Fig. 1B; Table 1), cannot be explained
by a floor effect. Rather, the slowing of RT as pretrial signal
increases (on repeat trials) is consistent with a previously
articulated notion that cognitive flexibility trades off to some
extent with cognitive stability (17–20). That is, in states of high
flexibility, active task sets are not maintained rigidly across trials,
thus reducing the benefits of task repetition.

Relationship to Task-Switch Network. We next considered how the
regions of interest (ROIs) identified in the current analysis relate
to previous studies of flexibility. Although PFC, ACC, and PPC
are regularly reported to participate in task switching (21), the

role of subcortical brain regions, especially the BG, has been less
understood. On one hand, neurodegenerative diseases impairing
dopamine function in the BG have been associated with set-
shifting deficits, as observed in Parkinson’s and Huntington’s
diseases (22–25). Moreover, administration of dopaminergic
drugs, particularly those acting on D2 receptors in the BG, can
improve flexibility (17, 26, 27). On the other hand, the BG have
not featured prominently in human neuroimaging studies of task
switching (but see refs. 28 and 29). One possible key to explain-
ing this puzzle is that the neuroimaging studies often have
focused on identifying regions exhibiting greater transient in-
creases in activity following the cue and target presentations on
switch trials than on repeat trials, and this approach may
overlook regions exerting sustained influences on flexibility
(11). To examine whether the BG conform to this description, we
carried out further analysis on the ROIs of the BG identified in
our primary analysis (i.e., the putamen and the subthalamic
nucleus). Specifically, we contrasted trial-evoked BOLD re-
sponses from switch versus repeat trials. For completeness, we
also performed this analysis on the remaining ROIs identified in
the primary analysis.

Results showed that neither the putamen nor the subthalamic
nucleus ROIs exhibited a significant difference on switch versus
repeat trials (P � 0.10 in both) (Fig. 1C; Table 1). In fact, fewer
than half of the ROIs were significant; all these were contained
within the PPC, lateral PFC, and ACC (Table 1). Given that most
of the ROIs in this analysis were nonselective, these results
confirm that brain areas can contribute to fluctuations in
flexibility while maintaining insensitivity to the current degree
of task-switching demands (11). Moreover, the results provide a
parsimonious explanation for why the BG have not been prom-
inent in prior neuroimaging studies of task switching.

Prediction from Distinct Sources of BOLD Variability. The previous
analysis established that the many ROIs in this study did not

Fig. 1. Seven of the regions identified in which pretrial signal differentially predicts RT on switch and repeat trials, with Talairach coordinates (40) indicating
center of mass. (A) Axial slices of corresponding regions, with cross-hairs indicating center of mass. (B) Mean regression lines for switch and repeat conditions,
drawn from �1.5 to � 1.5 SD of pretrial signal value, for each of the corresponding ROIs. The x-axis indicates pretrial signal value (z-score), and the y-axis indicates
RT. Symbols denote significance (see legend) of difference between the slope value versus a hypothesized mean of 0. (C) Trial-evoked BOLD activity for repeat
and switch trials. Error bars reflect standard error of the difference.
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behave in uniform fashion, at least with respect to their trial-
evoked responses. We next explored whether ROIs behaved
similarly with respect to predicting cognitive flexibility. In
particular, we sought to examine whether the BOLD variance
from which the ROIs predicted flexibility could be distilled to a
single source common to all regions or whether this variance was
distributed across multiple independent sources represented to
a greater or lesser degree in various subsets of regions.

In an initial approach to this question, the samples of pretrial
signals from each ROI were correlated with those of every other
ROI. Because the single-source account stipulates that a com-
mon source of variance exists across all ROIs (from which
flexibility can be predicted), it necessarily assumes that all ROIs
should be correlated to some extent. However, although many
regions did indeed correlate positively, several did not (Fig. 2).
In particular, the subcortical ROIs (subthalamic nucleus, puta-
men, and SC) were uncorrelated with several ROIs of the PPC.

We next evaluated the multiple-source account more directly.
Using a data-driven approach consisting of 2 steps described in
the following paragraphs, we were able to obtain evidence for at
least 4 unique sources of variance from which flexibility could be
predicted.

First, using independent component analysis (ICA), a tech-
nique that blindly separates uncorrelated and statistically inde-
pendent sources of variance (30, 31), we extracted 7 independent
components (ICs) contributing to the variance structure of the
pretrial signal across the 20 ROIs. The degree to which the ICs
correlated with the pretrial signal values from each of the ROIs
(i.e., the summary of factor loadings) is shown in Fig. 3.

After extracting the ICs, the second step was to test whether they
actually predicted flexibility. To this end, using the estimated
pretrial signals from each of the ICs, we carried out the primary
regression analysis to determine whether these pretrial signals
predicted flexibility (i.e., the convergence of RT on switch and
repeat trials). Results revealed 4 of the ICs were reliably predictive

(Fig. 3). Given that the components were uncorrelated and statis-
tically independent, these results confirm that fluctuations in flex-
ibility originated from multiple distinct sources.

Although additional research will be necessary to articulate
each IC’s unique contributions to flexibility, we offer some brief
discussion for 3 of the sources. First, consider the component
that is well characterized by the ACC, IC2. It has been proposed
that the ACC monitors ongoing performance and provides
internal feedback to the cognitive control system in response to
changing task demands or recent behavioral success (32, 33).
Thus, it is possible that this component reflects trial-to-trial
evaluation-linked adjustments in flexibility. However, whether

Table 1. Regions predicting cognitive flexibility (comparison of switch slope versus repeat slope)

Region

Coordinates
Vox,
no.

Peak
t value

Relationship between pretrial signal and RT
Trial-evoked

BOLD response
switch � repeat (P)

Switch Repeat

X Y Z � ms/sd P � ms/sd P

L IPL �40 �46 42 94 5.315 �23.337 0.0016 13.252 0.0514 0.0004
SupCol �1 �29 �2 19 5.253 �23.418 0.0005 8.246 0.0838 0.1649
L MFG �39 29 20 38 5.166 �17.476 0.0195 15.196 0.0080 0.0111
R SPL 22 �67 45 6 5.104 �13.741 0.0382 9.342 0.0512 0.1847
R AI 37 11 11 50 4.825 �22.047 0.0005 11.136 0.0504 0.3528
L SPL �11 �65 48 25 4.742 �18.958 0.0011 7.035 0.1802 0.0002
L IPS �31 �68 37 9 4.690 �16.155 0.0317 8.566 0.0148 0.0102
ACC �6 10 42 18 4.600 �16.114 0.0098 14.376 0.0188 0.0140
L Putamen �24 1 11 16 4.582 �16.885 0.0187 16.235 0.0148 0.1040
R SPL-2 4 �70 41 19 4.516 �5.272 0.1670 15.365 0.0191 0.0001
L SFS �23 �10 51 15 4.396 �15.646 0.0080 19.163 0.0070 0.0149
R MFG 33 39 28 7 4.359 �13.042 0.0057 4.307 0.3169 0.4787
SubThalNuc 2 �13 �2 7 4.352 �14.533 0.0131 11.552 0.0050 0.4020
R SPL-3 11 �63 47 9 4.279 �11.598 0.0583 9.651 0.1791 0.0065
R IPL 50 �40 50 7 4.222 �18.313 0.0007 4.567 0.3725 0.1262
R IFG 39 41 3 8 4.119 �18.094 0.0002 1.479 0.7976 0.0744
L SPL-2 �24 �55 53 8 4.080 �13.731 0.0639 12.443 0.0310 0.0282
PostCingG 2 �36 41 17 4.007 �14.925 0.0133 9.303 0.0908 0.7321
L ACC �16 4 42 6 3.979 �9.329 0.0451 18.250 0.0068 0.6027
R PostcentralG 48 �22 38 7 3.728 �11.573 0.1204 13.221 0.0263 0.6892

� ms/sd, change in RT per standard deviation of pretrial signal; ACC, anterior cingulate cortex; AI, anterior insula; IFG, inferior frontal gyrus; IPL, inferior
parietal lobule; IPS, intraparietal sulcus; L, left; MFG, middle frontal gyrus; R, right; SFS, superior frontal sulcus; SPL, superior parietal lobule; SubThalNuc,
subthalamic nucleus; SupCol, superior colliculus; Vox, voxels. Postcentral G, postcentral gyrus; PostCingG, posterior cingulate gyrus. Coordinates indicate center
of mass in Talairach space.

Fig. 2. Cross-correlation results. ROI names correspond to those listed in
Table 1.

13594 � www.pnas.org�cgi�doi�10.1073�pnas.0805423105 Leber et al.



subjects adjust f lexibility based on recent task demands is
unclear. In this study, when preceded by switch and repeat trials,
switch trial RTs were 685 ms and 684 ms, respectively, and repeat
trial RTs were 642 ms and 642 ms, respectively. Thus, f luctua-
tions of flexibility in task-switching studies may be evaluation
invariant, a possibility that is consistent with reports that subjects
largely are unable to adjust their f lexibility willfully, despite
detailed feedback and motivational payoff schemes (5). We
currently are exploring alternative explanations for the role of
the ACC.

The role of ICs 4 and 6 may be less controversial. Given the
clustering of the putamen and subthalamic nucleus along IC4,
and given further the previously established role of dopamine in
cognitive control (17, 19, 20, 26), this source of flexibility may
relate to moment-to-moment fluctuations of dopaminergic ac-
tivity in the BG. Turning to IC6, it is notable that the ROIs best
loading upon it—primarily in the PPC—also tended to show the
largest differences in the conventional switch versus repeat
analysis on the trial-evoked BOLD responses. Thus, this source
of flexibility may relate to momentary readiness of the regions
that carry out task-specific processing.§

Conclusions
The current work confirms that cognitive flexibility fluctuates from
moment to moment and reveals that such fluctuations can be
predicted from neural activity preceding knowledge of the upcom-
ing task. That is, during periods when task-specific processing (7)
presumably could not be implemented to benefit future perfor-
mance, task-switching success still could be predicted. Recent
advances in neuroimaging have granted researchers the tools to
probe states of the mind in such a way that a myriad of subsequent

behaviors may be predicted, including attentional control (16),
memory (34, 35), motor responding (36), and problem solving (37).
In studies like these, neural activity preceding task performance
commonly is correlated with overall performance, allowing the
interpretation that arousal, attention, or task engagement drives the
variations in performance. The current study demonstrates that a
single measure of neural activity can predict a more complex
pattern of behavior that cannot be explained as arousal, because
variations in arousal would modulate performance on both switch
and repeat trials equally. In sum, further work examining normal
fluctuations of mental activity in healthy adults promises to con-
tinue to provide new insights about the underlying architecture of
cognitive control.

Methods
Participants. Twenty-one neurologically intact individuals with normal or
corrected-to-normal vision participated in exchange for monetary compen-
sation. Twelve of the participants were female; all were right handed, and the
mean age was 22.2 years (range � 18–32 years). Participation included an
8-min behavioral practice session followed by a 45-min scanning session.
Informed consent was obtained, and the study protocol was approved by the
Human Investigation Committee of the Yale School of Medicine.

Task and Stimuli. Stimuli were generated with an Apple G4 computer, using
MATLAB software (Mathworks) with Psychophysics Toolbox extensions (38,
39). During scanning, stimuli were displayed via a Mitsubishi XL30U LCD
projector onto a screen mounted in the rear of the scanner bore, which partici-
pants viewed from a distance of 79 cm via a mirror attached to the head coil.

At the beginning of each run, a black outline square, which was filled in white,
was presented in the center of the display (2.33o visual angle per side, outline
stroke � 0.27o) on a gray background. This square remained displayed for the
duration of the run. Five hundred milliseconds later, a black outline fixation circle
appeared (0.82o diameter, stroke � 0.07o), centered inside the box.

Five hundred milliseconds before each trial, the fixation disappeared to
signal that a trial was to begin. Upon the trial onset the fixation circle
reappeared, now filled in with either red or green. This colored task cue
remained for 200 ms and was followed by an 800-ms presentation of only the
fixation circle, yielding a 1000-ms cue-target preparation interval. The target,
a digit drawn randomly on each trial from the set of 2, 4, 7, and 9 (height �

§An alternative account holds that these sources do not predict flexible switching between
task rules but rather the degree of response priming, an effect that interacts with task
switching (3). However, the relationship between pretrial signal and task-switch costs was
not contingent on response repetition, thus ruling out this concern (Fig. S2).

Fig. 3. Components extracted from ICA, with ICs predicting cognitive flexibility highlighted. (A) Mean regression lines for switch and repeat conditions. Symbols
above switch line and below repeat line denote significance of difference between slope value versus an hypothesized mean of 0. Symbols between switch and
repeat lines denote significance of difference between the 2 slopes. (B) Summary of the ROIs’ factor loadings.
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1.64o, width � 0.27o, stroke � 0.14o), then was superimposed over the fixation
circle for 200 ms and then was removed, leaving only the fixation circle.

The color of the task cue was mapped to 1 of 2 task types (counterbalanced
between subjects). In the magnitude task, participants were to report whether
the target was less than or greater than 5, responding with the left and right
button presses, respectively. In the parity task, participants were to report
whether the target was odd or even, responding with left and right buttons,
respectively. Note that the chosen response mappings ensured that partici-
pants did not learn task-invariant responses (i.e., the correct response to all
targets always was contingent on the cued task).

Responses were collected for up to 2000 ms following the target onset and
were followed by an intertrial interval of 1.5 or 4.5 s, yielding trial-to-trial
onset asynchronies, or trial spacings, of 4.5 or 7.5 s.

Each run consisted of 84 trials, including 2 filler trials at both the beginning
and end. The first filler trial began 1.5 s into the run, and the remaining filler
trials always were spaced 4.5 s after the previous trial onsets. Filler trial tasks
were chosen randomly.

Three independent variables were factorially crossed to determine the trial
conditions: 2 task types (magnitude and parity) � 2 trial spacings (4.5 s and
7.5 s) � 2 target responses (left button press and right button press). Each of
the 8 trial conditions was presented 10 times to yield the 80 main trials per run.

The presentation order was randomized within each run of each subject
with the constraint that half the trials of each task type were preceded by the
same task (repeat trial) and half were preceded by a different task (switch
trial). Target digits were chosen randomly on each trial so that they conformed
to constraints of the trial’s task type and target response (e.g., a magnitude
task with a ‘‘left’’ response required that the target be either 2 or 4).

Participants were instructed to respond as quickly as possible and minimize
errors. Left and right button-press responses were made using the index and
middle fingers of the right hand, respectively. Responses were collected via a
fiber-optic button box (Current Designs). No feedback was given.

fMRI Acquisition. A Siemens Trio 3-Tesla scanner, equipped with a standard
birdcage head coil, was used. After an initial anatomical localizer, a high-
resolution T1-weighted anatomical image was acquired with a 3-dimensional
magnetization prepared rapid acquisition gradient echo sequence. Then, 26
axial slices were defined (5-mm thickness, no gap), parallel to the anterior
commissure-posterior commissure line, covering the whole brain, and a sec-
ond anatomical image was acquired, using a T1 fast, low-angle shot sequence.
Using the same 26-slice orientation, 3 functional runs collecting 336 successive
volumes each then were carried out (TR � 1500 ms, TE � 25 ms, flip angle �
90°, 64 � 64 matrix with 3.5 mm � 3.5 mm in-plane resolution).

Behavioral Analysis. RT data were trimmed on correct response trials at 3 SD
above the mean, for each subject, within each task type (magnitude and parity)
and each task transition (switch and repeat), leading to the removal of 1.7% of
the trials. Additionally, error trials were excluded, as were trials following error
trials (trials following errors cannot necessarily be categorized as switch or re-
peat). For all reported analyses, data were collapsed across task type.

fMRI Analysis. Preprocessing. Brain Voyager QX software (Brain Innovation) was
usedforpreprocessing.Foreachsubject, thefirst7volumesofeachfunctional run
were discarded, and the data subsequently were motion corrected, slice-time
corrected, spatially smoothed with a 4-mm FWHM isotropic Gaussian kernel, and
subjected to linear trend removal. Because we anticipated that fluctuations in
flexibility might occur at slow temporal frequencies, we did not temporally
high-pass filter the data. The data then were transformed to Talairach space (40)
and resampled at a voxel size of 3 � 3 � 3 mm.
Whole-Brain Analysis: Predicting RT from Pretrial Signal. By applying a mask
covering the whole brain (but excluding the cerebellum and midbrain), the
number of voxels was restricted to 62,980. The following described analyses
were carried out independently for each subject, within each of the voxels.

Pretrial signal was obtained by extracting the fMRI signal value from the
single time point collected before each trial. Trials beginning on the eighth
volume acquisition of a run were excluded, because the pretrial volume (i.e.,
the seventh volume) was discarded during preprocessing. The remaining
sample of pretrial signal values within each run then were z-transformed and
pooled across all runs.

Within each task transition (switch versus repeat) and trial spacing (4.5 and
7.5 s), we carried out linear regression with pretrial signal as a predictor for
current trial RT. It was essential to perform the regressions separately for each
trial spacing because the close temporal proximity of trials ensured that the
pretrial signal would be influenced by the still-unfolding hemodynamic re-
sponse to the previous trial, and the degree of this influence might vary
systematically as a function of the previous trial’s onset time. (Note that this

approach does not consider influences of spacings previous to the immedi-
ately preceding trial; this issue is addressed in the Alternative Analyses below.)

Four beta coefficients were obtained from the regressions (2 trial spac-
ings � 2 task transitions), reflecting the relationship between pretrial signal
and RT. We then collapsed across trial spacing to arrive at 2 mean coefficients
(switch and repeat) per subject. These coefficients were treated as dependent
measures for repeated-measures random effects analysis, where 2-tailed t
tests were used to contrast the switch versus repeat coefficients. The resulting
t values from each voxel were used to generate a whole-brain statistical
parametric map.

To determine significant voxels, a single-voxel threshold was set at t (19) �
3.18, P � 0.005. By applying a spatial cluster threshold of 162 mm3, or 6
contiguous voxels, the family-wise (corrected) false probability rate was P �
0.025. This estimate was reached by carrying out 2000 Monte Carlo simulations
of whole-brain statistical maps, using Brain Voyager’s cluster threshold esti-
mator (41).
Alternative Analyses to Predict RT from Pretrial Signal. To address potential
limitations of the primary analysis, 2 subsequent analyses were carried out on
the ROIs yielded from the initial whole-brain results. Within each of these
ROIs, the fMRI signal at each time point was averaged across all voxels, and the
resulting mean values for each ROI were used.

1) Removing Contributions of Previous Evoked Responses from the Pretrial
Signal. Although the primary analysis was carried out separately for each trial
spacing to avoid contamination of the pretrial signal by the mean evoked
BOLD response to the previous trial, it is probable that earlier trial spacings
also influenced the pretrial signal. This possibility was not viewed as a concern,
because preliminary analysis showed that the earlier trial spacings did not
affect current-trial RT. Nevertheless, we aimed to partial out contributions to
the pretrial signal resulting from the mean trial-evoked responses preceding
the current trial. This alternative analysis was done in a fashion similar to
previous analyses of variations in RT as a function of variations in BOLD
activity (16).

For each ROI of each subject, a finite impulse response model was used to
estimate the mean trial-evoked response for both switch and repeat trials
within each run (42). Eleven candlestick predictors were established for each
task transition (switch and repeat), 1 for each time point following the trial
onset; given a 1.5-s TR, a duration of 16.5 s following trial onset was thus
modeled. Multiple regression then was used to partial out the variance in the
fMRI signal explained by the 22 predictors and to remove contributions of the
mean trial-evoked BOLD activity across each run.

Within each ROI, the primary regression analysis was recomputed using the
residual signals to determine how RT could be predicted on switch and repeat
trials. Results for these ROIs, shown in supporting information (SI) Table S1,
were remarkably similar to those of the initial analysis, indicating that the
mean trial-evoked responses before the immediately preceding trial had a
negligible effect on the capacity for pretrial signal to predict flexibility.

2) Removing Contributions of Previous Trial RT from the Pretrial Signal. It
is possible that RT on the previous trial somehow might influence pretrial signal
in such a way that it could account for the present results. To address this
possibility, for each ROI, within each run of each subject, linear regression was
used to partial out variance in the pretrial signal accounted for by previous trial
RT. The primary regression analysis again was recomputed on the residuals for
each ROI, and the results were virtually unchanged (Table S2).
Trial-Evoked Switch Versus Repeat Activity. To examine the trial-evoked (postcue)
BOLD activity on switch and repeat trials, both of these trial types were modeled
with a 2-gamma hemodynamic response function and used as predictors in a
multiple regression analysis carried out separately for each ROI for each subject.
Resulting beta coefficients for subjects’ switch and repeat trials subsequently
were entered into paired-samples t tests, separately for each ROI.
Cross-Correlation Analysis. Before correlations were computed, linear regres-
sion was used to partial out the following nuisance variables from the BOLD
signal from each ROI, separately for each subject: (i) 6 parameters obtained
from the motion correction procedure, (ii) BOLD signal measured from a
region in deep white matter, and (iii) mean ‘‘global’’ BOLD signal, averaged
across the 62,980 voxels in the whole-brain dataset. This was done to remove
spurious sources of variance attributable to scanner and motion artifacts,
respiration, and other factors deemed unrelated to neural activity (43, 44).
Note that although others have also partialed out lateral ventricle activity, we
did not because of the ventricles’ spatial proximity to the BG. Also, we
attempted to remove contributions of previous trial-evoked responses from
the pretrial signal. Using the finite impulse response model described earlier
in the Alternative Analyses (11 predictors each for switch and repeat trials),
variance explained by these predictors was partialed out.

Next, the samples of pretrial signals were extracted from each of the ROIs
and cross-correlated with each other, yielding 190 unique pairwise correla-
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tions, and the resulting correlation coefficients then were normalized, using
Fischer’s r-to-z transform. To evaluate the reliability of the pairwise correla-
tions at the group level, the Fischer z values from each subject then were
entered into t tests comparing each sample with a hypothesized mean of 0.
Results were displayed in Fig. 3A via use of the ‘‘corrmap’’ function, which
organizes variables using a K-nearest neighbor clustering algorithm (Eigen-
vector Research); minor modifications to this function allowed the display of
t values in lieu of standard correlation coefficients. To determine significant
correlations, the Holm-Bonferroni correction for multiple comparisons was
used, yielding a critical t value of 4.351, P � 0.0004. Mean Fischer z values and
corresponding t values for each pairwise correlation are reported in Fig. S1.
ICA. A fixed-effects ICA was carried out to separate sources of variance across
the 20 ROIs. First, within each ROI, the same samples of pretrial signal that
were prepared for the cross-correlation analysis were concatenated across all
runs of all subjects. Then principal component analysis was used to reduce the
data to 7 components (using an eigenvalue cutoff of 1.0). Next, the FastICA

algorithm was used to estimate the 7 ICs, using the deflation approach (30).
Each of the ICs can be characterized in 2 ways. First, each of these sources has
an estimated sample of pretrial values, much like each ROI. Second, each IC has
contributions in varying degrees by pretrial activity from each ROI (i.e., the set
of factor loadings).

To determine whether each IC predicted flexibility, the estimated samples
of pretrial values were subjected to the primary regression analysis (i.e.,
pretrial signal was used as a predictor of RT on switch and repeat trials, and the
resulting slope coefficients for each IC were compared via t tests).
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